全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于小波域的图像噪声类型识别与估计

Keywords: 小波变换图像去噪噪声类型识别噪声估计高斯噪声椒盐噪声

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出了一种基于小波域分解的类型识别方法.该方法利用噪声图像的小波高频子带系数能量分布,对图像中最常出现的两类噪声:高斯噪声和椒盐噪声进行识别,并在此基础上对高斯噪声的方差和椒盐噪声的密度进行了估计.对大量含噪图像的实验结果表明:该方法对图像噪声类型的识别和噪声大小的估计都比较准确.

References

[1]  Meer P, Jolion J, Rosenfeld A. A fast parallel algorithm for blind estimation of noise variance[J]. IEEE Trans. on Pattern Algorithm and Machine Intelligence, 1990, 12(2): 216-223.
[2]  Zhang Z, BlumRick S. On estimating the quality of noisy images[A]. IEEE International Conference on Acoustic Speech and Signal Processing, 1998, 5: 2897-2900.
[3]  XIE Jie-Cheng, ZHANG Da-Li, WU Wen-Li. Overview on wavelet image denoising[J].Journal of Image and Graphics(谢杰成,张大力,徐文立.小波图象去噪综述.中国图象图形学报), 2002, 7A(3): 209-217.
[4]  Rafael C Gonzalez, Richard E Woods. Digital Image Processing(Second Edition)[M].Beijing: Publishing House of Electron Industry (数字图像处理. 北京:电子工业出版社), 2002.
[5]  Chang S Grace, Bin Yu, Martin Vetterli. Spatially adaptive wavelet thresholding with context modeling for image denoising[J]. IEEE Trans. on Image Processing, 2000, 9(9): 1522-1531.
[6]  Donoho D L, Johnstone I M. Ideal spatial adaptaition via wavelet shrinkage[J]. Biometrika, 1994, 81: 425-455.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133