全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

甘薯近缘种Ipomoeatrifida(Kunth)G.Don基因组Fosmid文库构建及PCR筛选体系建立

DOI: 10.7668/hbnxb.2014.02.008, PP. 45-50

Keywords: 甘薯近缘野生种,基因组,Fosmid文库,文库筛选体系

Full-Text   Cite this paper   Add to My Lib

Abstract:

为挖掘有价值的基因资源,对甘薯近缘种I.trifida的基因组文库进行了研究。通过流式细胞法测定I.trifida(2x,编号DLP4597)基因组大小为531.699Mb。以叶片为材料采用包埋法提取基因组DNA,通过物理剪切进行基因组DNA片段化并进行末端平滑化和磷酸化处理,脉冲场电泳回收33~48kb的DNA片段,然后连接到Fosmid载体pCC1FOS(Epicentre)上,包装转化大肠杆菌EPI300,构建了I.trifida的基因组Fosmid文库,该文库包含101952个单克隆,保存于1062个96孔培养板中,平均插入片段35kb,覆盖基因组约6.7倍,理论上任意片段筛出率达到99.88%。以20个96孔板为一组构建三维PCR筛选体系,共分为53个组(第53组包含22个96孔板),每组包含1个超级池,20个板池,12个列池,8个行池,理论上最多通过93个PCR反应即可筛选到1个阳性单克隆。随机选择来自I.trifida的10个基因进行文库克隆筛选,平均阳性克隆数为8.2个,最少阳性克隆数为3个,最多为16个。

References

[1]  Jarret R L, Austin D F. Genetic diversity and systematicrelationships in sweetpotato (Ipomoea batatas (L. )Lam. ) and related species as revealed by RAPD analysis[J]. Genetic Resources and Crop Evolution, 1994, 41(3):165-173.
[2]  Huang J C, Sun M. Genetic diversity and relationships ofsweetpotato and its wild relatives in Ipomoea series Bata-tas (Convolvulaceae ) as revealed by inter-simple se-quence repeat (ISSR) and restriction analysis of chloro-plast DNA[J]. Theoretical and Applied Genetics, 2000,100(7):1050-1060.
[3]  Huang J, Corke H, Sun M. Highly polymorphic AFLPmarkers as a complementary tool to ITS sequences in as-sessing genetic diversity and phylogenetic relationships ofsweetpotato (Ipomoea batatas (L. ) Lam. ) and its wildrelatives [J]. Genetic Resources and Crop Evolution,2002,49(6):541-550.
[4]  Rajapakse S, Nilmalgoda S D, Molnar M, et al. Phyloge-netic relationships of the sweetpotato in Ipomoea seriesBatatas (Convolvulaceae) based on nuclear β-amylasegene sequences[J]. Molecular Phylogenetics and Evolu-tion,2004,30(3):623-632.
[5]  Srisuwan S, Sihachakr D, Siljak-Yakovlev S. The origin and evolution of sweet potato (Ipomoea batatas Lam. )and its wild relatives through the cytogenetic approaches[J]. Plant Sci,2006,171(3):424-433.
[6]  Roullier C, Duputie A, Wennekes P, et al. Disentanglingthe origins of cultivated sweet potato (Ipomoea batatas(L. ) Lam. ) [J]. PLoS One,2013,8(5): e62707.
[7]  Komiyama A, Sano Z-i, Murata T, et al. Resistance to tworaces of meloidogyne incognita and resistance mechanismin diploid Ipomoea trifida[J]. Breeding Science,2006,56(1):81-83.
[8]  Iwanaga M, Freyre R, Orjeda G. Use of Ipomoea trifida(HBK. ) G. Don germ plasm for sweet potato improve-ment. 1. Development of synthetic hexaploids of I. trifidaby ploidy-level manipulations [J ]. Genome, 1991, 34(2):201-208.
[9]  Freyre R, Iwanaga M, Orjeda G. Use of Ipomoea trifida(HBK. ) G. Don germ plasm for sweet-potato improve-ment. 2. Fertility of synthetic hexaploids and triploidswith 2 n gametes of I. trifida, and their interspecific cros-sability with sweet potato [J]. Genome, 1991, 34 (2):209-214.
[10]  Orjeda G, Freyre R, Iwanaga M. Use of Ipomoea trifidagerm plasm for sweet potato improvement. 3. Develop-ment of 4x interspecific hybrids between Ipomoea batatas(L. ) Lam. (2n = 6x = 90) and I. trifida (H. B. K) G.Don. (2n = 2x = 30) as storage-root initiators for wildspecies[J]. Theoretical and Applied Genetics, 1991, 83(2):159-163.
[11]  Kakeda K, Kowyama Y. Sequences of Ipomoea trifidacDNAs related to the Brassica S-locus genes[J]. SexualPlant Reproduction,1996,9(5):309-310.
[12]  Kowyama Y, Kakeda K, Kondo K, et al. A putative re-ceptor protein kinase gene in Ipomoea trifida[J]. PlantCell Physiol,1996,37(5):681-685.
[13]  Kakeda K, Tsukada H, Kowyama Y. A self-compatiblemutant S allele conferring a dominant negative effect onthe functional S allele in Ipomoea trifida [J]. SexualPlant Reproduction,2000,13(3):119-125.
[14]  Kowyama Y, Tsuchiya T, Kakeda K. Sporophytic self-in-compatibility in Ipomoea trifida, a close relative of sweetpotato[J]. Annals of Botany,2000, 85(suppl 1 ): 191 -196.
[15]  Suzuki G, Tanaka S, Yamamoto M, et al. Visualization ofthe S-locus region in Ipomoea trifida: toward positionalcloning of self-incompatibility genes [J]. ChromosomeRes,2004,12(5):475-481.
[16]  Tomita R, Fukami K, Takayama S, et al. Genetic map-ping of AFLP/AMF-derived DNA markers in the vicini-ty of the self-incompatibility locus in Ipomoea trifida[J]. Sexual Plant Reproduction, 2004, 16 (6): 265 -272.
[17]  Rahman M H, Tsuchiya T, Suwabe K, et al. Physical sizeof the S locus region defined by genetic recombinationand genome sequencing in Ipomoea trifida, Convolvu-laceae[J]. Sexual Plant Reproduction, 2007, 20 (2):63-72.
[18]  Chen L, Ye J, Liu Y, et al. Construction, characteriza-tion, and chromosomal mapping of a fosmid library of thewhite-cheeked gibbon (Nomascus leucogenys) [J]. Ge-nomics Proteomics Bioinformatics, 2007, 5 (3-4 ):207-215.
[19]  曹清河, 张 安, 李 鹏, 等. 甘薯近缘野生种的抗病性鉴定与新型种间杂种的获得[J]. 植物遗传资源学报,2009,10(02):224-229.
[20]  Park T H, Park B S, Kim J A, et al. Construction of ran-dom sheared fosmid library from Chinese cabbage and itsuse for Brassica rapa genome sequencing project[J]. JGenet Genomics,2011,38(1):47-53.
[21]  李 冰, 闫守庆, 孙金海. 家猪 Fosmid 基因组文库的构建[J]. 中国畜牧兽医,2007,34(10):53-55.
[22]  李会琴, 林炜铁, 蔡小龙, 等. 对虾养殖水环境宏基因组 Fosmid 文 库 的 构 建 [J]. 生 物 技 术 通 报, 2011,(6):112-115,126.
[23]  李朋波, 薛龙飞, 王彦霞, 等. 雷蒙德氏棉叶绿体基因组 Fosmid 文库 构 建[J]. 棉 花学报, 2011, 23 (01 ):10-14.
[24]  张 玉, 茆振川, 陈国华, 等. 南方根结线虫伴生细菌宏基因组 Fosmid 文库构建及其特征分析[J]. 植物保护学报,2009,36(6):545-549.
[25]  Dole?El J, Barto? J A N. Plant DNA flow cytometry andestimation of nuclear genome size[J]. Annals of Botany,2005,95(1):99-110.
[26]  刘 进, 张晓军, 苏 琳, 等. 仿刺参基因组大小的测定[J]. 水产学报,2012,36(5):686-695.
[27]  邓果特, 刘清波, 蒋建雄, 等. 五节芒基因组大小测定[J]. 植物 遗 传 资 源 学 报, 2013, 14 (2): 339-341,346.
[28]  孙晓华, 张全启, 王旭波, 等. 半滑舌鳎雌鱼基因 组Fosmid 文库构建及分析[J]. 中 国 海洋大学学报: 自然科学版,2010,40(08):88-92.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133