全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
湖泊科学  2015 

南京花神湖3种沉水植物表面附着微生物群落特征

DOI: 10.18307/2015.0113

Keywords: 水生植物,微生物群落,附生藻类,微生境,花神湖,菹草,伊乐藻,金鱼藻

Full-Text   Cite this paper   Add to My Lib

Abstract:

沉水植物表面附着微生物系统是水生态的重要组成部分,然而当前对其了解仍不清楚.南京市花神湖是一个城市湖泊,沉水植物生长区域面积占湖面面积的40%左右.尽管花神湖的氮、磷营养盐水平很高,但最近未发生过藻类水华现象.本文以南京市花神湖中自然生长的优势种菹草(Potamogetoncrispus)、伊乐藻(Elodeanuttallii)和金鱼藻(Ceratophyllumdemersum)为研究对象,利用扫描电镜和荧光显微镜观测了叶表面附着微生物群落的分布特征,测定了植物表面附着微生物的密度及附生藻类的种类、密度和优势种群,并比较分析了不同水生植物之间附生藻类的差异性.结果表明,沉水植物表面微生物群落的分布与物种和叶龄有关.3种沉水植物中,菹草表面微生物群落结构最为复杂,微生境最为丰富.底部老叶片上面附着较多的微生物且表现出较高的生物多样性.植物表面附着微生物密度大小顺序为:菹草>金鱼藻>伊乐藻;植物表面附生藻类密度大小顺序为:菹草>金鱼藻>伊乐藻.总体来讲,沉水植物表面微生物总量大概比藻类数量高1~2个数量级.这为深入研究沉水植物及其表面微生物的生态功能奠定了基础.

References

[1]  倪乐意.大型水生植物.北京:科学出版社,1999:224-241.
[2]  Allanson BR. The fine structure of the periphyton of Char asp and Potamogeton natans from Wytham Pond,Oxford,and its significance to the macrophyte-periphyton metabolic model of RG Wetzel and HLAllen. Freshwater Biology, 1973,3(6):535-542.
[3]  Bronmark C. Interactions between epiphytes macrophytes and freshwater snails a review. Journal of Molluscan Studies, 1989,55(2):299-311.
[4]  Gross EM,Claudia F,Andrea G. Epiphyte biomass and elemental composition on submersed macrophytes in shallow eutrophic lakes. Hydrobiologia, 2003:559-565 DOI:10.1023/B:HYDR.0000008538.68268.82.
[5]  顾詠洁,王秀芝,廖祖荷.利用着生生物群落动态变化监测水质的研究.华东师范大学学报:自然科学版,2005,(4):87-94.
[6]  纪海婷,谢冬,周恒杰等.沉水植物附植生物群落生态学研究进展.湖泊科学,2013,25(2):163-170.
[7]  Jaschinski SD,Brepohl C. The tropic importance of epiphytic algae in a freshwater macrophyte system (Potamogeton perfoliatus L.):stable isotope and fatty acid analyses. Aquatic Sciences,2010,73(1):91-101.
[8]  李博.生态学.北京:高等教育出版社,2007:117-118.
[9]  刘玉超.罗非鱼——附着藻——沉水植物相互关系研究进展.生态环境学报,2010,19(10):2511-2514.
[10]  Kim MA,Richardson JS. Effects of light and nutrients on grazer-periphyton interactions. Proceedings of a Conference on the Biology and Management of Species and Habitats at Risk, Kamloops, B.C., Kamloops, 1999:497-502,15-19.
[11]  Bornette G, Puijalon S. Response of aquatic plants to abiotic factors:a review. Aquatic Sciences, 2011,73(1):1-14.
[12]  朱广伟,秦伯强,高光.强弱风浪扰动下太湖的营养盐垂向分布特征.水科学进展,2004,15(6):676-680.
[13]  Liborussen L,Jeppesen E. Temporal dynamics in epipelic,pelagic an d epiphytic algal production in a clear an d a turbid shallow lake. Freshwater Biology,2003,48(3):418-431.
[14]  苏胜齐,沈盎绿,姚维志.菹草着生藻类的群落结构与数量特征初步研究.西南农业大学学报,2002,24(3):255-258.
[15]  刘鸿亮.湖泊富营养化控制.北京:中国环境科学出版社,2011.
[16]  秦伯强.太湖水环境演化过程与机理.北京:科学出版社,2004.
[17]  种云霄,胡洪营,钱易.大型水生植物在水污染治理中的应用研究进展.环境污染治理技术与设备,2003,2(2):36-40.
[18]  吴建强,黄沈发,丁玲.水生植物水体修复机理及其影响因素.水资源保护,2007,7(4):18-36.
[19]  姚洁,刘正文.罗非鱼对附着藻类和浮游植物影响的初步研究.生态科学,2010,29(2):147-151.
[20]  Cai X, Gao G, Yang J et al. An ultrasonic method for separation of epiphytic microbes from freshwater submerged macrophytes. Journal of Basic Microbiology, 2013.doi:10.1002/jobm.201300041.
[21]  李琳琳,汤祥明,高光等.沉水植物生态修复对西湖细菌多样性及群落结构的影响.湖泊科学,2013,25(2):188-198.
[22]  Pielou EC. Ecological diversity.New York:John Wiley & Sons Inc,1975.
[23]  更多...
[24]  Cathleen W, John W, Karin L et al. Effect of Vallisneria americana(L.) on community structure and ecosystem function in lake mesocosms. Hydrobiologia, 2000,418(9):137-146.
[25]  Heckels JE, Blackett B, Ward ME et al. The influence of surface charge on the attachment of Neisseria gonohoeaeto human cells. Journal of General Microbiol, 1976,96(3):359-364.
[26]  Gniazdowska A, Bogatek R. Allelopathic interactions between plants. Multi site action of allelochemicals. Acta Physiologiae Plantarum, 2005,27(3):395-407.
[27]  杨美玖,宋玉芝.氨氮浓度对苦草上附植藻类定植的影响.环境科学与技术,2012,35(12):6-9.
[28]  Melanie H, Maja B, Irmgard B et al. Epiphytic bacterial community composition on two common submerged macrophytes in brackish water and freshwater. BMC Microbiology, 2008,8:58 doi:10.1186/1471-2180-8-58.
[29]  Melanie H, Hans-Peter G, Gross EM. Community composition of bacterial biofilms on two submerged macrophytes and an artificial substrate in a pre-alpine lake. Aquatic Microbial Ecology,2009,58(1):79-94.
[30]  Harlin MM. Transfer of products between epiphytic marine algae and host plants. Journal of Phycology, 1973,9(3):243-248.
[31]  Acs E,Kiss KT. Investigation of periphytic algae in the Danube at God(1669 river km, Hungary). Arch Hydrobiologia, 1991,62(8):47-67.
[32]  Eriksson PG, Weisner SEB. An experimental study on effects of submersed macrophytes on nitrification and denitrification in ammonium-rich aquatic systems. Limnology and Oceanography, 1999,44(8):1993-1999.
[33]  Hempel M, Grossart HP, Gross EM. Community composition of bacterial biofilms on two submerged macrophytes and an artificial substrate in a pre-alpine lake. Aquatic Microbial Ecology, 2009,58(1):79-94.
[34]  Kreiling RM, Richardson WB, Cavanaugh JC et al. Summer nitrate uptake and denitrification in an upper Mississippi River backwater lake:the role of rooted aquatic vegetation. Biogeochemistry, 2011,104(1/2/3):309-324.
[35]  罗岳平,李益健.细菌和藻类的粘附行为及其生态学意义.生态学杂志,1996,15(5):55-61.
[36]  Marshall KC, Stout Ruby, Mitchell R et al. Mechanism of the initial events in the sorption of marine bacteria to surfaces. Microbiology, 1971,68(3):337-348.
[37]  Cai X, Gao G, Tang X, Dong B et al. The response of epiphytic microbes to habitat and growth status of Potamogeton malaianus Miq. in Lake Taihu. Journal of Basic Microbiology, 2013,53(10):828-837.
[38]  Woodcock S,Besemer K,Battin TJ et al. Modelling the effects of dispersal mechanisms and hydrodynamic regimes upon the structure of microbial communities within fluvial biofilms. Environ Microbiol, 2012,doi:10.1111/1462-2920.12055.
[39]  Battin TJ, Kaplan LA, Newbold J et al. Contributions of microbial biofilms to ecosystem processes in stream mesocosms. Nature,2003,426(6965):439-442.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133