全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

永磁同步电机调速系统的分数阶积分滑模控制

, PP. 1736-1742

Keywords: 自动控制技术,永磁同步电机,分数阶微积分,积分滑模控制,速度控制

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了提高永磁同步电机(PMSM)调速系统对负载扰动及参数变化的鲁棒性,采用速度误差的分数阶微积分,设计了非线性积分滑模面,并提出一种基于分数阶积分滑模控制算法(FOISMC)的PMSM速度控制系统。通过Lyapunov定理证明了所设计的控制器的稳定性,并对该控制器进行了性能分析。理论分析和数值仿真结果表明:所提方法比整数阶积分滑模控制以及常规PI控制具有更好的动态性能和抗扰动能力,以及更高的速度跟随精度。

References

[1]  Rachid E, Mohand O. Nonlinear predictive controller for a permanent magnet synchronous motor drive[J]. Mathematics and Computers in Simulation, 2010, 81(2): 394-406.
[2]  Zhou J, Wang Y. Real-time nonlinear adaptive back stepping speed control for a PM synchronous motor[J]. Control Engineering Practice, 2005, 13(10): 1259-1269.
[3]  Hsien T L, Sun Y Y, Tsai M C. H ∞ control for a sensorless permanent magnet synchronous drive[J]. IEE Proceedings Electric Power Applications, 1997, 144(3): 173-181.
[4]  Mezouar A, Fellah M K, Hadjeri S. Adaptive sliding mode observer for induction motor using two-time-scale approach[J]. Electric Power Systems Research, 2007,77(5):604-618.
[5]  Chern T L, Wu Y C. Design of integral variable structure controller and application to electro hydraulic velocity servo systems[J]. IEE Proceedings D. IET, 1991, 138(5): 439-444.
[6]  Bailk I C, Kim K H, Youn M J. Robust nonlinear speed control of PM synchronous motor using boundary layer integral sliding mode control technique[J]. IEEE Transactions on Control System Technology, 2000,8(1):47-54.
[7]  童克文, 张兴, 张昱, 等. 基于新型趋近率的永磁同步电机滑模变结构控制[J]. 中国电机工程学报,2008, 28(21): 102-106. Dong Ke-wen, Zhang Xing, Zhang Yu, et al. Sliding mode variable structure control of a permanent magnet synchronous machine based on a novel reaching law[J]. Proceedings of the CSEE, 2008,28(21): 102-106.
[8]  Podlubny I. Fractional-order systems and PIλDμ-controllers[J]. IEEE Transactions on Automatic Control, 1999, 44(1): 208-214.
[9]  Li H S, Luo Y, Chen Y Q. A Fractional order proportional and derivative (FOPD) motion controller: tuning rule and experiments[J]. IEEE Transactions on Control Systems Technology, 2010,18(2):516-520.
[10]  Li Y,Chen Y Q,Podlubny I. Stability of fractional order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability[J].Computers Mathematics with Applications,2010,59(5):1810-1821.
[11]  Chen Y Q, Petras I, Xue D Y. Fractional order control-A tutorial[C]∥American Control Conference, 2009:1397-1411.
[12]  Oldham K B, Spanier J. The Fractional Calculus[M]. New York:Academic Press, 1974.
[13]  Slemon G R. Electrical machines for variable-frequency drives[J]. Proceeding of IEEE, 1994, 82(8): 1123-1139.
[14]  Podlubny I. Fractional Differential Equations[M]. San Diego:Academic Press,1999.
[15]  张碧陶, 皮佑国. 永磁同步电机伺服系统模糊分数阶滑模控制[J]. 控制与决策,2012, 27(12): 1776-1780. Zhang Bi-tao, Pi You-guo. Fractional order fuzzy sliding mode control for permanent magnet synchronous motor servo drive[J]. Control and Decision, 2012, 27(12): 1776- 1780.
[16]  Delavari H, Ghaderi R, Ranjbar A, et al. Fuzzy fractional order sliding mode controller for nonlinear systems[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(4):963-978.
[17]  Lin F J. Real-time IP position controller design with torque feedforward control for PM synchronous motor[J]. IEEE Transactions on Industrial Electronics, 1997,44(3):398-407.
[18]  王礼鹏,张化光,刘秀翀. 低速PMSM无速度传感器调速系统积分滑模控制[J]. 电机与控制学报, 2012,16(2): 20-24. Wang Li-peng, Zhang Hua-guang, Liu Xiu-chong. Sensorless of integral sliding mode controlled PMSM at low speeds[J]. Electric Machines and Control, 2012,16(2): 20-24.
[19]  李鹏, 郑志强. 非线性积分滑模控制方法[J]. 控制理论与应用,2011,28(3): 421-426. Li Peng, Zheng Zhi-qiang. Sliding mode control approach with nonlinear integrator[J]. Control Theory & Applications, 2011,28(3):421-426.
[20]  陈振, 耿洁, 刘向东. 基于积分时变滑模控制的永磁同步电机调速系统[J]. 电工技术学报,2011,26(6): 56-61. Chen Zhen, Geng Jie, Liu Xiang-dong. An integral and exponential time-varying sliding mode control of permanent magnet synchronous motors[J]. Transactions of China Electrotechnical Society, 2011,26(6): 56-61.
[21]  Ahmed E, EI-Sayed A M A, EI-Saka H A. Equilibrium points, stability and numerical solutions of fractional order predator-prey and rabies models[J]. Journal of Mathematical Analysis and Applications,2007,325(22):542-553.
[22]  史宏宇, 冯勇, 张袅娜. 感应电动机全局高阶滑模观测器[J]. 吉林大学学报:工学版,2013,43(3): 688-694. Shi Hong-yu, Feng Yong, Zhang Niao-na. Global high-order sliding mode observer for induction motor[J]. Journal of Jilin University (Engineering and Technology Edition), 2013,43(3): 688-694.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133