全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

消散型同步的微弱周期信号检测及噪声影响分析

, PP. 1182-1190

Keywords: 通信技术,混沌,消散型混沌同步,微弱信号检测,径向基函数神经网络

Full-Text   Cite this paper   Add to My Lib

Abstract:

在混沌预测模型基础上,提出了消散型同步的混沌背景下微弱信号检测算法。采用径向基函数神经网络(RBFNN)拟合混沌模型,结合消散型同步实现混沌时间序列与混沌系统的同步,利用同步误差实现微弱信号的检测。以Rossler混沌系统为研究对象,验证了算法的可行性,研究了噪声对微弱信号检测的影响。仿真研究表明,该算法能检测各种频率的微弱信号,在一定条件下可检测到信杂比大于-110dB的微弱周期信号;若信噪比SNR≥0dB,噪声对微弱信号检测的影响很小;但若SNR<-10dB,将检测不出微弱信号。在理论研究基础上,由MKS-CEC-Ⅲ新型混沌演化控制实验仪获取Coullet混沌时间序列,添加不同频率的微弱信号,利用该算法实现了不同频率微弱信号的检测,说明该算法适用于其他混沌系统。

References

[1]  Holger K, Thomas S.Nonlinear Time Series Analysis[M].London:Cambridge University Press, 1997.
[2]  Matthew B K, Brown R, Henry D I A. Determining embedding dimension for phase-space reconstruction using a geometrical construction[J]. Physical Review A, 1992, 45(6): 3403-3411.
[3]  Cao L Y. Practical method for determining the minimum embedding dimension of a scalar time series[J]. Physica D: Nonlinear Phenomena, 1997, 110(1-2):43-50.
[4]  Kugiumtzis D. State space reconstruction parameters in the analysis of chaotic time series—the role of the time window length[J]. Physica D: Nonlinear Phenomena, 1996, 95(1):13-28.
[5]  Fraser A M, Swinney H L. Independent coordinates for strange attractors from mutual information[J]. Physical Review A, 1986, 33(2): 1134-1140.
[6]  Haykin S, Li X B.Detection of signals in chaos[J].Proc of IEEE, 1995, 83(1):95-122.
[7]  陈瑛, 罗鹏飞.海杂波背景下基于RBF神经网络的目标检测[J].雷达科学与技术, 2005, 3(5):271-275. Cheng Ying, Luo Peng-fei. Target detection in sea clutter based on RBF neural network[J]. Radar Science and Technology, 2005, 3(5): 271-275.
[8]  Hennessey G, Leung H, Drosopoulos A, et al. Sea-clutter modeling using a radial-basis-function neural network[J]. IEEE on Oceanic Engineering, 2001, 26(3):358-372.
[9]  行鸿彦, 金天力. 基于对偶约束最小二乘支持向量机的混沌海杂波背景中的微弱信号检测[J]. 物理学报, 2010, 59(1):140-146. Xing Hong-yan, Jin Tian-li. Weak signal estimation in chaotic clutter using wavelet analysis and symmetric LS-SVM regression[J]. Acta Physica Sinica, 2010, 59(1):140-146.
[10]  Zhou C T, Teo K B, Chew L Y. Detection of signals from noisy chaotic interference[J]. Physica Scripta, 2002, 65(6):469-475.
[11]  Kurian A P, Leung H. Model based synchronization for weak signal detection[C]∥IEEE International Instrumentation and Measurement Technology Conference, Vancouver Island, 2008:1219-1222.
[12]  Kurian A P, Leung H. Weak signal estimation in chaotic clutter using model-based coupled synchronization[J]. IEEE Transactions on Circuits and Systems, 2009, 56 (4):820-828.
[13]  He D, Leung H. CFAR detection of weak target in clutter using chaos synchronization[J]. Interna- tional Journal of Circuit Theory and Applications, 2007, 36(8):899-921.
[14]  Pecora L M, Carroll T L. Synchronization in chaotic systems[J]. Physical Review Letters, 1990, 64(8):821-824.
[15]  王茂林, 刘少伟, 孙晓东. 复杂噪声背景下正弦频率估计新方法[J]. 吉林大学学报:工学版, 2009, 39(2):371-375. Wang Mao-lin, Liu Shao-wei, Sun Xiao-dong. New frequency estimation method for sinusoidal signal submerged in complicated noise[J]. Journal of Jilin University (Engineering and Technology Edition), 2009, 39(2):371-375.
[16]  孙晓东, 石要武, 于晓辉. 混沌干扰背景下的正弦频率估计新方法[J]. 吉林大学学报:工学版, 2009, 39(5):1353-1357. Sun Xiao-dong, Shi Yao-wu, Yu Xiao-hui. New frequency estimation method for sinusoidal signal submerged in strong chaotic background[J]. Journal of Jilin University (Engineering and Technology Edition), 2009, 39(5):1353-1357.
[17]  Parlitz U. Estimating model parameters from time series by autosynchronization[J]. Physical Review Letters, 1996, 76(8):1232-1235.
[18]  Konnur R. Estimation of all model parameters of chaotic systems from discrete scalar time series measurements[J]. Physics Letters A, 2005, 346 (4):275-280.
[19]  Brown R, Rulkov N F, Tracy E R. Modeling and synchronizing chaotic systems from time-series data[J]. Physical Review E, 1994, 49(5): 3784-3800.
[20]  Voss H U. Synchronization of reconstructed dynamical systems[J]. Chaos, 2003, 13(1): 327-334.
[21]  张袅娜, 周邃, 张德江. 基于主动控制的异结构混沌系统有限时间同步[J]. 吉林大学学报:工学版, 2011, 41(4):1131-1134. Zhang Niao-na, Zhou Sui, Zhang De-jiang. Synchronization control of finite time conver- gence between two different structure chaos systems[J]. Journal of Jilin University (Engineer- ing and Technology Edition), 2011, 41(4):1131- 1134.
[22]  黄报星. Lorenz系统的混沌同步与保密通信[J]. 吉林大学学报:工学版, 2003, 33(3):60-63. Huang Bao-xing. Chaotic synchronization of Lorenz systems and secure communication[J]. Journal of Jilin University (Engineering and Technology Edition), 2003, 33(3):60-63.
[23]  秦洁, 于洪洁. 超混沌Rossler系统构成的星形网络的混沌同步[J]. 物理学报, 2007, 56(12): 6828-6835. Qin Jie, Yu Hong-jie. Synchronization of starnetwork of hyperchaotic Rossler systems[J]. Acta Physica Sinica, 2007, 56(12):6828-6835.
[24]  Zhu X, Chen Z, Gao Z, et. al. Experimental research and verification for Coullet chaos system[C]∥The Sixth International Conference on Natural Computation, Yantai, 2010: 3040-3044.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133