全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

裂隙介质渗流的光滑多尺度有限元法

, PP. 481-486

Keywords: 固体力学,光滑多尺度有限元,双重介质模型,多尺度有限元,应变光滑技术

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对材料的非均质、多尺度问题,提出了光滑多尺度有限元法。将该方法用于求解裂隙介质的渗流问题,采用双重介质模型进行模拟。利用初始时刻的全局细尺度解确定边界条件构造多尺度基函数,从而将局部非均质信息和孔隙-裂隙流体流动耦合的全局信息同时反映到多尺度基函数上,由此在粗尺度上获得精确解。光滑多尺度有限元将应变光滑技术引入到传统多尺度有限元中,简化了宏观矩阵的组装,克服了常规有限元计算刚度过硬的缺陷。计算结果表明:光滑多尺度有限元的结果与常规有限元的细尺度解有很好的一致性,并且比传统多尺度有限元计算效率高、精度好。

References

[1]  Zhang H W, Wu J K, Fu Z D. Extended multiscale finite element method for elasto-plastic analysis of 2D periodic lattice truss materials[J]. Computational Mechanics, 2010, 45(6): 623-635.
[2]  张锐, 唐志平, 郑航. 离散元与有限元耦合的时空多尺度计算方法[J]. 吉林大学学报: 工学版, 2009, 39(2): 408-412.Zhang Rui, Tang Zhi-ping, Zheng Hang. Time and space multiscale numerical method by coupling discrete element method and finite element method[J]. Journal of Jilin University (Engineering and Technology Edition), 2009, 39(2): 408-412.
[3]  Hou T Y, Wu X H. A multiscale finite element method for elliptic problems in composite materials and porous media[J]. Journal of Computational Physics, 1997, 134(1): 169-189.
[4]  Efendiev T, Galvis J, Hou T Y. Generalized multiscale finite element methods[J]. Journal of Computational Physics, 2013, 251: 116-135.
[5]  Zhang N, Yao J, Huang Z Q, et al. Accurate multiscale finite element method for numerical simulation of two-phase flow in fractured media using discrete-fracture model[J]. Journal of Computational Physics, 2013, 242: 420-438.
[6]  Hajibeygi H, Karvounis D, Jenny P. A hierarchical fracture model for the iterative multiscale finite volume method[J]. Journal of Computational Physics, 2011, 230(24): 8729- 8743.
[7]  Barenblatt G I, Zheltov I P, Kochina I N. Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks[J]. Journal of Applied Mathematics and Mechanics, 1960, 24(5): 1286-1303.
[8]  Jiang L J, Efendiev Y, Ginting V. Analysis of global multiscale finite element methods for wave equations with continuum spatial scales[J]. Applied Numerical Mathematics, 2010, 60(8): 862-876.
[9]  Chen J S, Wu C T, Yoon S. A stabilized conforming nodal integration for Galerkin meshfree methods[J]. International Journal for Numerical Methods in Engineering, 2001, 50(2): 435-466.
[10]  Liu G R, Nguyen T T, Dai K Y, et al.Theoretical aspects of the smoothed finite element method[J]. International Journal for Numerical Methods in Engineering, 2007, 71(8): 902-930.
[11]  周立明, 孟广伟, 周振平, 等. 含孔复合材料层合板的Cell-Based光滑有限元法[J]. 东北大学学报: 自然科学版, 2013, 34(S2): 90-93,97.Zhou Li-ming, Meng Guang-wei, Zhou Zhen-ping, et al. Cell-Based smoothed finite element method for laminated composited plates with circular opening[J]. Journal of Northeastern University (Natural Science), 2013, 34(增刊2): 90-93,97.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133