Hager W W and Zhang H. A new conjugate gradient method with guaranteed descent and an efficient line search[J]. SIAM Journal on Optimization, 2005, 16: 170-192.
[2]
Dolan E D and Mor| J J. Benchmarking optimization software with performance profiles[J]. Mathematical Programming, 2002, 91: 201-213.
[3]
Hestenes M R. Iterative method for sovling linear equations, NANL Report No 53-9, National Bureau of Standards, Washington, D.C. 1951(later published in JOTA, 1973, 1:322-334).
[4]
Stiefel E L. über einige Methodern der Relationsrechnung, Zeitschrifit für Angewandte Mathematik under Physik 1952, 3.
[5]
Fletcher R, Reeves C. Function minimization by conjugate gradients[J]. Computer Journal, 1964, 7: 149-154.
[6]
Hestenes M R, Stiefel E L. Methods of conjugate gradients for solving linear systems[J]. J Res Nat Bur Standards Sect. 1952, 5: 409-436.
[7]
Liu Y and Story C. E fficient generalized conjugate gradient algorithms. Part 1: Theory, J. Optimize. Theory Appl. 1992, 69: 129-137.
[8]
Polak E, Ribire G. Note sur la xonvergence de directions conjugees[J]. Rev Francaise informat Recherche Operatinelle 3e Annee 1969, 16: 35-43.
[9]
Polak B T, The conjugate gradient method in extreme problems[J]. USSR Comput. Math. Math. Phys., 1969, 9: 94-112.
[10]
Dai Y H, Yuan Y X. Nonlinear Conjugate Gradient with a Strong Global Convergence Property[J]. SIAM Journal of Optimization, 2000, 10: 177-182.
[11]
Powell M J D. Convergence properties of algorithms for nonlinear optimization[J]. SIAM Review, 1986, 28: 487-500.
[12]
Grippo L, Lucidi S. A globally convergent version of the Polak-Rebiére conjugate gradient method[J]. Math Prog. 1997, 56: 375-391.
[13]
Zoutendijk G. Nonlinear Programming, Computational Methods, In: J.Abadie(eds0, Integer and Nonlinear Programming, North-Holland, 1970, 37-86.