Berman A and Plemmons R J. Nonnegative matrices in the mathematical sciences[M]. Academic Press, New York, 1979.
[2]
Burman E and Ern A. Discrete maximum principle for Galerkin approximations of the Laplace operator on arbitrary meshes[J]. C. R. Acad. Sci. Paris, Ser. I, 2004, 338:641-646.
[3]
Draganescu A, Dupont T F and Scott L R. Failure of the discrete maximum principle for an elliptic finite element problem[J]. Math. Comp., 2004, 74(249):1-23.
[4]
Hoteit H, Mose R, Philippe B, Ackerer Ph and Erhel J. The maximum principle violations of the mixed-hybrid finite-element method applied to diffusion equations[J]. Numer. Meth. Engng., 2002, 55(12):1373-1390.
[5]
Kapyrin I. A family of monotone methods for the numerical solution of three-dimensional diffusion problems on unstructured tetrahedral meshes[J]. Dokl. Math., 2007, 76(2):734-738.
[6]
Korotov S, Krizek M and Neittaanm?ki P. Weakened acute type condition for tetrahedral triangulations and the discrete maximum principle[J]. Math. Comp., 2000, 70:107-119.
[7]
Lipnikov K, Shashkov M, Svyatskiy D and Vassilevski Yu. Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes[J]. J. Comput. Phys., 2007, 227:492-512.
[8]
Lipnikov K, Svyatskiy D and Vassilevski Yu. Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes[J]. J. Comput. Phys., 2009, 228:703-716.
[9]
Lipnikov K, Svyatskiy D and Vassilevski Y. A monotone finite volume method for advectiondiffusion equations on unstructured polygonal meshes[J]. J. Comput. Phys. 2010, 229:4017-4032.
[10]
Liska R and Shashkov M. Enforcing the discrete maximum principle for linear finite element solutions of second-Order elliptic problems[J]. Commun. Comput. Phys., 2008, 3:852-877.
[11]
Mishev I D. Finite Volume methods on Voronoi meshes[J]. Numer. Meth. Part. D. E., 1998, 12(2):193-212.
[12]
Mousseau V A and Knoll D A. Temporal Accuracy of the Nonequilibrium Radiation Diffusion Equations Applied to Two-Dimensional Multimaterial Simulations[J]. Nucl. Sci. Eng., 2006, 154:174-189.
[13]
Nordbotten J M and Aavatsmark I. Monotonicity conditions for control volume methods on uniform parallelogram grids in homogeneous media[J]. Computat. Geosci., 2005, 9:61-72.
[14]
Nordbotten J M, Aavatsmark I and Eigestad G T. Monotonicity of control volume methods[J]. Numer. Math., 2007, 106:255-288.
[15]
Olson G L, Auer L H and Hall M L. Diffusion, P1, and other approximate forms of radiation transport[J]. J. Quant. Spectrosc. Radiat. Transfer, 2000, 64:619-634.
[16]
Le Potier C. Finite volume monotone scheme for highly anisotropic diffusion operators on unstructured triangular meshes[J]. C. R. Acad. Sci. Paris, Ser. I, 2005, 341:787-792.
[17]
Potier C L. Finite volume scheme satisfying maxcimum and minimum preinciples for anisotropic diffusion operators, in:R. Eymard, J.-M. H. (eds.) (Eds.), Finite Volumes for Complex Applications V, 2008, 103-118.
[18]
Prateek Sharma and Gregory W. Hammett, Preserving monotonicity in anisotropic diffusion[J]. J. Comput. Phys., 2007, 227:123-142.
[19]
Sheng Z and Yuan G. A nine point scheme for the approximation of diffusion operators on distorted quadrilateral meshes[J]. SIAM J. Sci. Comput., 2008, 30:1341-1361.
[20]
Sheng Z and Yuan G. The finite volume scheme preserving extremum principle for diffusion equations on polygonal meshes[J]. J. Comput. Phys., 2010, 230:2588-2604.
[21]
Sheng Z, Yue J and Yuan G. Monotone finite volume schemes of nonequilibrium radiation diffusion equations on distorted meshes[J]. SIAM J Sci Comput., 2009, 31:2915-2934.
[22]
Yuan G and Sheng Z. Monotone finite volume schemes for diffusion equations on polygonal meshes[J]. J. Comput. Phys., 2008, 227:6288-6312.