Ciarlet P G. The Finite Element Method for Elliptic Problem[M]. North-Holland: Amsterdam, 1978.
[2]
Lin Q and Lin J F. Finite element methods: accuracy and improvement[M]. Beijing: Science Press, China, 2006.
[3]
Thomée V. Galerkin Finite Element Methods for Parabolic Problems[M]. Springer-Verlay: Berlin Heidelberg, 1997.
[4]
Johnson C and Thomée V. Error estimates for some mixed finite element methods for parabolic type problems[J]. RAIRO Numer. Anal., 1981, 15 (1): 41-78.
[5]
Dawson C and Kirby R. Solution of parabolic equations by backward Euler mixed finite element methods on a dynamically changing mesh[J]. SIAM J. Numer. Anal., 1999, 37 (2): 423-442.
[6]
Rui H X. Symmetric mixed covolume methods for parabolic problems[J]. Numer. Methods Partial Differential Equations, 2002, 18 (5): 561-583.
[7]
Larson M G and Axel M. A posteriori error estimates for mixed finite element approximations of parabolic problems[J]. Numer. Math., 2011, 118 (1):33-48.
Yang D P. Least squares mixed finite element methods for nonlinear parabolic problems[J]. J. Comput. Math., 2002, 20 (2): 153-164.
[10]
Bochev A B, Dohrmann C R and Guzburger M D. Stabilization of low-order mixed finite elements for the Stokes equations[J]. SIAM J. Numer. Anal., 2006, 44 (1): 82-101.
[11]
Pani A K. An H1-Galerkin mixed finite element methods for parabolic partial differential equations[J]. SIAM J. Numer. Anal., 1998, 35 (2): 721-727.
[12]
Pani A K and Fairweather G. H1-Galerkin mixed finite element methods for parabolic parial integro-differential equations[J]. IMA J. Numer. Anal., 2002, 22 (2): 231-252.
Thomée V, Xu J C and Zhang N Y. Superconvergence of the gradient in piecewise linear finite element approximation to a parabolic problem[J]. SIAM J. Numer. Anal., 1989, 26 (3): 553-573.
[16]
Kwak Do Y, Lee S Y and Li Q. Superconvergence of finite element method for parabolic problem[J]. Int. J. math. & Math. Sci., 2000, 23 (8): 567-578.
[17]
Squeff M C. Superconvergence of mixed finite element methods for parabolic problems[J]. M2AN Math. Model. Numer. Anal., 1987, 21 (1): 327-352.
[18]
Ewing R E and Lazarov R D. Superconvergence of the mixed finite element approximations for parabolic problems using rectangular finite elements[J]. East-West J. Numer. Math., 1993, 1 (3): 199-212.
[19]
Kwon D S and Park E J. Superconvergence of Crank-Nicolson mixed finite element solution of parabolic problems[J]. Kangweon-Kyungki Math. Jour., 2005, 13 (2): 139-148.
[20]
Madhusmita T and Sinha R K. Superconvergence of H1-Galerkin mixed finite element methods for parabolic problems[J]. Appl. Anal., 2009, 88 (8): 1213-1231.
Shi D Y and Wang L. An anisotropic nonconforming finite element scheme with moving grids for parabolic integro-differential equations[J]. J. Syst. Sci. Complex, 2011, 24 (5): 1020-1032.
[25]
Shi D Y, Mao S P and Chen S C. Anisotropic nonconforming finite element with some superconvergence results[J]. J. Comput. Math., 2005, 23 (3): 261-274.
[26]
Lin Q, Lutz Tobiska and Zhou A H. Superconvergence and extrapolation of nonconforming low order finite elements applied to the possion equation[J]. IMA J. Numer. Anal., 2005, 25 (1): 160-181.
[27]
Shi D Y and Zhang Y D. High accuracy analysis of a new nonconforming mixed finite element scheme for Sobolev equations[J]. Appl. Math. Comput., 2011, 218 (7): 3176-3186.