全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
计算数学  2014 

n维散乱数据带自然边界条件多元多项式样条插值

, PP. 407-426

Keywords: 散乱数据,自然边界条件,多元多项式,自然样条,插值

Full-Text   Cite this paper   Add to My Lib

Abstract:

考虑n维散乱数据Hermit-Birkhoff型插值问题,在使给定的目标泛极小的条件下,构造了一种带自然边界条件的多元多项式样条函数插值方法.重点研究了插值问题解的特征,存在唯一性和构造方法,并讨论了收敛性及误差,最后给出了一些数值算例对方法进行验证.

References

[1]  Chen T F, Shen J. 图像处理与分析: 变分, PDE, 小波及随机方法(影印版)[M]. 北京:科学出版社, 2009.
[2]  唐泽圣.三维数据场可视化[M]. 北京: 清华大学出版社, 1999.
[3]  de Boor C. Bicubic spline interpolation[J], J. Math.Phys., 1962, 41: 212-218.
[4]  Schumaker L L. Fitting surfaces to scattered data,203-268, in Approximation Theory II[M]. Lorentz G G, Chui CK,Schumaker L L. eds., New York: Academic Press, 1976.
[5]  Frank R. Scattered data interpolation: tests of some methods[J]. Math. Comput.,1982, 38: 181-200.
[6]  Micchelli C A. Interpolation of scatteted data: distance matrices and conditionally positive definite functions[J].Constr. Approx., 1986, 2: 11-22.
[7]  王仁宏.多元样条及其应用[M].北京: 科学出版社, 1992.
[8]  Lai M J. Multivarariate Splines for data fitting and approximation, 210-228, in Approximation Theory XII[M]. San Antonio,2007, Neamtu M., Schumaker L.L., eds., Brentwood: Nashboro Press, 2008.
[9]  吴宗敏.散乱数据拟合的模型、方法和理论[M]. 北京:科学出版社, 2007.
[10]  Amidror I. Scattered data interpolation methods for electronic imaging systems: a survey[J]. J. Elect. Imag., 2002,11(2): 157-176.
[11]  Chui C K, Shumaker S S, Wang R H. On spaces of piecewise polynomial with boundary cnditions, II type-1 triangulations, 51-66, in Second Edmonton Conference on Approximation Theory[M]. Ditzian Z, Meir A, Riemenschneider S and Shrma A eds., Provindence: American Mathematical Society, 1983.
[12]  Chui C K, Wang R H. Multivariate spline spaces[J]. J. Math. Anal. Appl, 1983, 94: 197-221.
[13]  Lai M J, Schumaker L L.Spline Functions Over Triangulations[M]. London: Cambridge University Press, 2007.
[14]  de Boor C, H?llig K, Riemenschneider S. Box Splines[M]. Berlin: Springer-Verlag, 1993.
[15]  Chui C K, Lai M J. On multivariate vertex splines and applications, 19-36, in Topics in Multivariate Approximation[M]. Chui C K, Schumaker L L, Utreras F eds. New York: Academic Press, 1987.
[16]  Chui C K, Lai M J. Multivariate vertex splines and finite elements[J]. J. Approx. Theory, 1990, 60: 245-343.
[17]  Chui C K, He T X. On bivariate C1 quadratic finite elements and vertes splines[J]. Math. Comp., 1990, 54: 169-187.
[18]  Li Y S. Multivariate optimal interpolation to scattered data throughout a rectangle I-with continuous boundary conditions[J]. CAT 55, Texax A&M University, 1984.
[19]  Li Y S, Guan L T. Bivariate polynomial natural Splines interpolation to seattered data[J]. J. Comput. Math., 1990, 8(2): 135-146.
[20]  Guan L T. Bivariate polynomial natural spline interpolation algorithms with local basis for scattered data[J]. J. Comp. Anal. Appl., 2003, 2(1): 77-101.
[21]  关履泰. 散乱数据的多项式自然样条光顺与广义插值.计算数学, 1993, 17(4): 383-401.
[22]  Guan L T, Liu B. Surface design by natural Splines over refined grid points[J]. J. Comp. Appl. Math, 2004, 163(1): 107-115.
[23]  关履泰, 许伟志, 朱庆勇. 一种双三次散乱数据多项式自然样条插值[J]. 中山大学学报(自然科学版), 2008, 47(5): 1-4.
[24]  许伟志, 关履泰, 韩乐. 散乱数据(2m-1, 2n-1)次多项式自然样条插值[J]. 数值计算与计算机应用, 2009, 30(4): 255-265. 浏览
[25]  徐应祥, 喻高航, 关履泰. 散乱数据带自然边界条件三元多项式样条插值[J]. 计算数学, 2011, 33(4): 423-446. 浏览
[26]  Adams R A. Sobolev Spaces[M]. New York: Academic Press, 1975.
[27]  Evans L C. Partial Differential Equations[M]. Providence: American Mathematical Society, 1998.
[28]  Goldberg S. Unbounded Linear Operator: Theory and Application[M]. New York: McGraw-Hill, Inc., 1966.
[29]  Bezhaev A Y, Vasilenko V A. Variational Theory of Splines[M]. New York: Kluwer Academic/Plenum Publishers, 2001.
[30]  Kouibia A, Pasadas M. Approximation by interpolatingvariational splines[J]. J. Comp. Appl. Math., 2008, 218: 342-349.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133