全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
计算数学  2014 

非线性特征值问题的二次近似方法

, PP. 381-392

Keywords: 非线性特征值问题,逐次二次近似方法,Arnoldi方法,Jacobi-Davidson方法

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究求解非线性特征值问题的数值方法.基于矩阵值函数的二次近似,将非线性特征值问题转化为二次特征值问题,提出了求解非线性特征值问题的逐次二次近似方法,分析了该方法的收敛性.结合求解二次特征值问题的Arnoldi方法和Jacobi-Davidson方法,给出求解非线性特征值问题的一些二次近似方法.数值结果表明本文所给算法是有效的.

References

[1]  Ruhe A. Algorithms for the nonlinear eigenvalue problems[J]. SIAM J. Numer. Anal., 1973, 10: 674-689.
[2]  Sun W, Liu K M. Iterative algorithms for nonlinear ordinary differential eigenvalue problems[J]. Appl. Numer. Math., 2001, 38: 61-376.
[3]  Kim C W, Bennighof J K. Fast frequency response analysis of large-scale structures with non-proportional damping[J]. Int. J. Numer. Meth. Eng., 2007, 69: 978-992.
[4]  Bramely J S, Dennis S C R. The calculation of eigenvalues for the stationary perturbation of Poiseuille flow[J]. J. Comput. Phys., 1982, 47: 179-198.
[5]  Hu H Y, Wang Z H. Dynamics of Controlled Mechanical Systems with Delayed Feedback[M]. Springer Verlag, Berlin, 2002.
[6]  Tisseur F, Meerbergen K. The quadratic eigenvalue problem[J]. SIAM Rev., 2001, 43: 235-286.
[7]  Przemieniecki J S. Theory of Matrix Structural Analysis[M]. McGraw-Hill, New York, 1968.
[8]  Gupta K K. On a finite dynamic element method for free vibration analysis of structures[J]. Comput. Methods Appl. Mech. Eng., 1976, 9: 105-120.
[9]  Dumont N A. On the solution of generalized nonlinear complex-symmetric eigenvalue problems[J]. Int. J. Numer. Meth. Eng., 2007, 71: 1534-1568.
[10]  Conca C, Planchard J, Vanninathan M. Existence and location of eigenvalues for fluid-solid structures[J]. Comput. Methods Appl. Mech. Eng., 1989, 77: 253-291.
[11]  Voss H. A rational spectral problem in fluid-solid vibration[J]. Electro. Trans. Numer. Anal., 2003, 16: 94-106.
[12]  Su Y F, Bai Z Z. Solving rational eigenvalue problems via linearization[J]. SIAM J. Matrix. Anal. Appl., 2011, 32: 201-216.
[13]  Adhikari S, Pascual B. Eigenvalues of linear viscoelastic systems[J]. J. Sound Vib., 2009, 325: 1000-1011.
[14]  Hwang T M, Lin W W, Wang W C, Wang W. Numerical simulation of three dimensional pyramid quantum dot[J]. J. Comput. Phys., 2004, 196: 208-232.
[15]  Voss H. Numerical calculation of the electronic structure for three-dimensional quantum dots[J]. Comput. Phys. Commun., 2006, 174: 441-446.
[16]  Hwang T M, Wang W C, Wang W. Numerical schemes for three-dimensional irregular shape quantum dots over curvilinear coordinate systems[J]. J. Comput. Phys., 2007, 226: 754-773.
[17]  Mehrmann V, Voss H. Nonlinear eigenvalue problems: A challenge for modern eigenvalue methods[J]. GAMM-Mitteilungen, 2005, 27: 121-152.
[18]  Gohberg I, Lancaster P, Rodman L. Matrix Polynomials[M]. Academic Press, New York, 1982.
[19]  Higham N J, Mackey D S, Tisseur F. The conditioning of linearizations of matrix polynomials[J]. SIAM J. Matrix Anal. Appl., 2006, 28: 1005-1028.
[20]  Lancaster P. A generalised Rayleigh quotient iteration for λ-matrices[J]. Arch. Ration. Mech. Anal., 1961, 8: 309-322.
[21]  Szyld DB, Xue F. Local convergence analysis of several inexact Newton-type algorithms for general nonlinear eigenvalue problems[J]. Numer. Math., 2013, 123: 333-362.
[22]  Kublanovskaya V N. On an approach to the solution of the generalized latent value problem for λ-matrices[J]. SIAM. J. Numer. Anal., 1970, 7: 532-537.
[23]  Dai H, Bai Z Z. On smooth LU decompositions with applications to solutions of nonlinear eigenvalue problems[J]. J. Comput. Math., 2010, 28: 745-766.
[24]  Anselone P, Rall L. The solution of characteristic value-vector problems by Newton's method[J]. Numer. Math., 1968, 11: 38-45.
[25]  Jarlebring E. Convergence factors of Newton methods for nonlinear eigenvalue problems[J]. Linear Algebra Appl., 2012, 436: 3943-3953.
[26]  Neumaier A. Residual inverse iteration for nonlinear eigenvalue problem[J]. SIAM J.Numer. Anal., 1985, 22: 914-923.
[27]  Jarlebring E, Michiels W. Analyzing the convergence factor of residual inverse iteration[J]. BIT, 2011, 51: 937-957.
[28]  Voss H. An Arnoldi method for nonlinea eigenvalue problems[J]. BIT, 2004, 44: 387-401.
[29]  Sleijpen G L G, Van der Vorst H V. A Jacobi-Davidson iteration method for linear eigenvalue problems[J]. SIAM J. Matrix Anal. Appl., 1996, 17: 401-425.
[30]  Sleijpen G L G, Booten A G L, Fokkema D R, Van der Vorst H V. Jacobi-Davidson type methods for generalized eigenproblems and polynomial eigenproblems[J]. BIT, 1996, 36: 595-633.
[31]  Betcke T, Voss H. A Jacobi-Davidson-type projection method for nonlinear eigenvlaue pro-blems[J]. Future Gener. Comp. Sy., 2004, 20: 363-372.
[32]  Voss H. A Jacobi Davidson method for nonlinear and nonsymmetric eigenproblems[J]. Comput. Struct., 2007, 85: 1284-1292.
[33]  Bai Z, Su Y. SOAR: a second-order Arnoldi method for the solution of the quadratic eigenvalue problem[J]. SIAM J. Matrix Anal. Appl., 2005, 26: 640-659.
[34]  张治中. 精化迭代块二阶Arnoldi方法[D]. 南京航空航天大学硕士 学位论文, 2006.
[35]  古志鸣. 现代分析及其应用引论[M]. 北京: 科学出版社, 2004.
[36]  Betcke T, Higham N J, Mehrmann V, Schroder C, Tisseur F. NLEVP: A collection of nonlinear eigenvalue problems[J]. ACM Trans. Math. Softw., 2013, 39(2), Article 7, 28 pages.
[37]  Jain N K, Singhal K. On Kublanovskaya's approach to the solution of the generalized latent value problem for functional λ-matrices[J]. SIAM J. Numer. Anal., 1983, 20: 1062-1070.
[38]  李仁仓. QR分解与非线性特征值问题[J]. 计算数学, 1989, 11: 374-385. 浏览
[39]  陈广义, 薛彦才. 求解非线性矩阵特征值问题的一个三阶收敛的算 法[J]. 数值计算与计算机应用, 1994, 15: 120-129. 浏览
[40]  Guo J S, Lin W W, Wang C S. Nonequivalence deflation for the solution of matrix latent value problems[J]. Linear Algebra Appl., 1995, 231: 15-45.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133