Barvinok A L. Problems of distance geometry and convex properties of quadratic maps[J]. Discrete Computational Geometry, 1995, 13(1): 189-202.
[2]
Higham N J, Computing the nearest correlation matrix-a problem from finance[J]. IMA Journal of Numerical Analysis. 2002, 22(3): 329-343.
[3]
Qi, H D, Sun D. An augmented Lagrangian dual approach for the H-weighted nearest correlation matrix problem[J]. IMA Journal of Numerical Analysis, 2011, 31(2): 491-511
[4]
Malick J, A dual approach to semidefinite least-squares problems[J]. SIAM Journal on Matrix Analysis and Applications, 2005, 26(1): 272-284.
[5]
Nie, J W, Yuan Y X. A predictor-corrector algorithm for QSDP combining Dikin-type and Newton centering steps[J]. Annals of Operations Research. 2001, 103(1): 115-133.
[6]
Toh K C, Tutuncu R H and Todd M J. Inexact primal-dual path-following algorithms for a special class of convex quadratic SDP and related problems[J]. Pacific Journal of Optimization, 2007, 3(1): 135-164
[7]
Toh K C. An inexact primal-dual path-following algorithm for convex quadratic SDP[J]. Mathematical Programming. 2008, 112(1): 221-254.
[8]
Lin H L. An inexact spectral bundle method for convex quadratic semidefinite programming[J]. Computational Optimization and Applications, 2012, 53(1): 45-89.
[9]
Zhao, X Y. A semismooth Newton-CG augmented Lagrangian method for large scale linear and convex quadratic SDPs[D]. Singapore, National University of Singapore, 2009.
[10]
Burer S, Monteiro R D C. A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization[J]. Mathematical Programming (Series B), 2003, 95(1): 329-357.
[11]
Burer S, Monteiro R D C. Local minima and convergence in low-rank semidefinite programming[J]. Mathematical Programming, 2005, 103(3): 427-444.
[12]
Burer S, Choi C H. Computational enhancements in low-rank semidefinite programming[J]. Optimization Methods & Software, 2006, 21(3): 493-512.
[13]
Delbos F, Gilbert J C. Global Linear Convergence of an Augmented Lagrangian Algorithm to Solve Convex Quadratic Optimization Problems[J]. Journal of Convex Analysis Volume, 2005, 12(1): 45-69.
[14]
Toh K C. User guide for QSDP-0 a MATLAB software package for convex quadratic semidefinite programming[EB/OL]. (2010-2-25).[2013-12-16]. http://www.math.nus. edu.sg/mattohkc/QSDP-guide.pdf
Kojima M, Shindoh S, and Hara S. Interior-point methods for the monotone linear complementarity problem in symmetric matrices[J]. SIAM Journal on Optimization, 1997, 7(1): 86-125.
[18]
Kojima M, Shida M, and Shindoh S. Reduction of Monotone Linear Complementarity Problems over Cones to Linear Programs over Cones[J]. Acta Mathematica Vietnamica, 1997, 22(1): 147-157.
[19]
Apkarian P, Noll D, Thevenet J P, et al. A spectral quadratic-SDP method with applications to fixed-order H2 and H∞ synthesis[C]. 2004, 5th Asian Control Conference, Melbourne, Australia.