Babuska I. Error-bounds for finite element method[J]. Numerische Mathematik, 1971, 16(4): 322-333.
[2]
Brezzi F. On the existence uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers[J]. RAIRO Analyse Numerique, 1974, 8(2): 129-151.
Shi D Y, Li M H. Superconvergence analysis of a stable conforming rectangular mixed finite elements for the linear elasticity problem[J]. Journal of Computational Mathematics, 2014, 32(2): 205-214.
[8]
Shi D Y, Zhang Y D. High accuracy analysis of a new nonconforming mixed finite element scheme for Sobolev equation[J]. Applied Mathematics Computation, 2011, 218(7): 3176-3186.
Shi D Y, Zhang D. Approximation of nonconforming quasi-Wilson element for sine-Gordon equation[J]. Journal of Computational Mathematics, 2013,31(3): 271-282.
Shi D Y, Zhu H Q. The superconvergence analysis of an anisotropic finite element[J]. Journal of Systems Science and Complexity, 2005, 18(4): 478-487.
[17]
Chen S C, Shi D Y, Zhao Y C. Anisotropic interpolation and quasi-Wilson element for narrow quadrilateral meshes[J]. IMA Journal of Numerical Analysis, 2004, 24(1): 77-95.
[18]
Apel T. Anisotropic Finite Elements: Local Estimates and Applications[M]. B.G. Teubner: Advance in Numerical Mathematics, Stuttgart, Leipzig, 1999. %Advance in Numerical Mathematics,Teubner, Stuttgart, Leipzig: B.G.Teubner, 1999.
[19]
Lin Q, Lin J F. Finite Element Methods: Accuracy and Improvement[M]. Beijing: Science Press, 2006.
[20]
Shi D Y, Gong W. A low order nonconforming anisotropic finite element approximation to parabolic problem[J]. Journal of Systems Science and Complexity, 2009, 22(3): 518-532.
[21]
Vider Thomée. Galerkin Finite Element Methods for Parabolic Problems [M]. Berlin:Spring-Verlag, 1997.
Wang J L. A new error analysis of Crank-Nicolson Galerkin FEMs for a generalized nonlinear Schr?dinger equation[J]. Journal of Scientific Computing, 2014, 60(2): 390-407.
[25]
Lin Q, Tobiska L, Zhou A H. Superconvergence and extrapolation of nonconformimg low order finite elements applied to the Poisson equation[J]. IMA Journal of Numerical Analysis, 2005, 25(1): 160-181.
[26]
Shi D Y, Mao S P, Chen S C. An anisotropic nonconforming finite element with some superconvergence results[J]. Journal of Computational Mathematics, 2005, 23(3): 261-274.
[27]
Shi D Y, Wang H H, Du Y P. An anisotropic nonconforming finite element method for approximating a class of nonlinear Sobolev equations[J]. Journal of Computational Mathematics, 2009, 27(2-3): 299-314.
[28]
Shi D Y, Zhou J Q, Shi D W. A new low order least squares nonconforming characteristics mixed finite element method for Burgers' equation[J]. Applied Mathematics and Computation, 2013, 219(24): 11302-11310.
[29]
Shi D Y, Yu Z Y. Low-order nonconforming mixed finite element methods for stationary incompressible magnetohydrodynamics equations[J]. Journal of Applied Mathematics, 2013, 10(4): 904-919.
Rannacher R, Turek S. Simple nonconforming quadrilateral Stokes element[J]. Numerical Methods for Partial Differential Equations, 1992, 8(2): 97-111.
[32]
Wang L H. On the error estimate of nonconforming finite element approximation to the obstacle problem[J]. Journal of Computational Mathematics, 2003, 21(4): 481-490.
[33]
Shi D Y, Shi Z C, Wu J Z. A note on the quadrilateral mesh condition [J]. Journal of Computational Mathematics, 2007, 25(1): 27-30.
[34]
Shi D Y, Xu C, Chen J H. Anisotropic nonconforming EQ1rot quadrilateral finite element approximation to second order elliptic problem[J]. Journal of Scientific Computing, 2013, 56(3): 637-653.
[35]
Shi D Y, Xu C. EQ1rot nonconforming finite element approximation to Signorini problem[J]. Science China Mathematics, 2013, 56(6): 1301-1311.
[36]
Xu X J. On the accuracy of nonconforming quadrilateral Q1 element approximation of Navier-Stokes problem[J]. SIAM Journal on Numerical Analysis, 2000, 38(1): 17-39.