全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
计算数学  2015 

Helmholtz方程周期Green函数及其偏导数截断误差收敛阶的分析

, PP. 123-136

Keywords: Helmholtz方程,周期Green函数,Hankel函数,收敛阶,Abel不等式

Full-Text   Cite this paper   Add to My Lib

Abstract:

在应用边界元方法求解Helmholtz方程周期边值问题时,需要构造以周期Green函数或其偏导数为核函数的积分算子形式的解.由于Helmholtz方程的周期Green函数GP是一个函数项级数,该级数的通项是Hankel函数,在数值求解中,需要对其进行截断,从而很有必要研究其截断误差.本文根据Hankel函数在变量趋于无穷大时的渐近展开式,并结合Abel不等式,证明了GP及其一阶偏导和二阶混合偏导一致收敛,且其截断误差收敛阶均为O(1/√p).最后,通过数值实验验证了理论证明的正确性.本文的证明方法也可被用于证明其它一些方程周期Green函数的收敛性问题.

References

[1]  Milton Abramowitz and Irene A Stegun, eds., Handbook of Mathematical Functions with Formu- las, Graphs, and Mathematical Tables[M]. Dover: New York, 1972.
[2]  Colton D and Kress R. Integral Equation Methods in Scattering Theory[M]. John Wiley and sons, New York, 1983.
[3]  Colton D and Kress R. Inverse Acoustic and Electromagnetic Scattering Theory[M]. Spring-Verlag, Berlin, 1992.
[4]  Kress R. Boundary integral equation in time-harmonic acoustic scattering[J]. Mathematical and Computer Modelling, 1991, 15(3-5): 229-243.
[5]  Kress R and Roach G F. Transmission Probelms for The Helmoltz Equation[J]. Journal of Math- ematical Physics, 1978, 19: 1433-1437.
[6]  Venakides S, Haider M A and Papanicolaou V. Boundary integral calculations of 2-D electromag- netic scattering by photonic crystal Fabry-Perot structures[J]. SIAM Journal on Applied Mathe- matics, 2000, 60: 1686-1706.
[7]  Haider M A, Venakides S and Shipman S P. Boundary-Integral Calculations of Two-Dimensional Electromagnetic Scattering in Infinite Photonic Crystal Slabs: Channel Defects and SIAM Journal on Applied Mathematics, 2002, 62(6): 2129-2148.
[8]  Otani Y and Nishimura N. An FMM for periodic boundary value problems for cracks for Helmholtz' equation in 2D[J]. International Journal for Numerical Methods in Engineering, 2008, 73: 381-406.
[9]  Barnett A and Greengard L. A new integral representation for quasi-periodic fields and its appli- cation to two-dimensional band structure calculations[J]. Journal of Computational Physics, 2010, 229: 6898-6914.
[10]  Barnett A and Greengard L. A New Integral Representation for Quasi-Periodic Scattering Prob- lems in Two Dimensions[J]. BIT Numerical Mathematics, 2011, 51: 67-90.
[11]  Gillman A and Barnett A. A fast direct solver for quasi-periodic scattering problems[J]. Journal of Computational Physics, 2013, 248: 309-322.
[12]  Filippo Capolino, Donald R Wilton and William A Johnson, Efficient Computation of the 2-D Green's Function for 1-D Periodic Structures Using the Ewald Method[J]. IEEE Transactions on antennas and propagation, 2005, 53(9): 2977-2984.
[13]  Guido Valerio, Paolo Baccarelli, Paolo Burghignoli and Alessandro Galli. Comparative Analysis of Acceleration Techniques for 2-D and 3-D Green's Functions in Periodic Structures Along One and Two Directions[J]. IEEE Transactions on antennas and propagation, 2007, 55(6): 1630-1642.
[14]  Hazewinkel, M.(Ed.), Encyclopaedia of Mathematics[M]. Vol.1(A-B), Kluwer, 1987.Resonances[J].

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133