Shi D Y, Wang P L, Zhao Y M. Superconvergence analysis of anisotropic linear triangular finite element for nonlinear Schr?dinger Equation[J]. Appl. Math. Letter, 2014, 38:129-134.
[2]
Wang J L. A new error analysis of Crank-Nicolson Galerkin FEMs for a generalized nonlinear Schr?dinger equation[J]. J. Sci. Comput., 2014, 60(2): 390-407.
[3]
罗振东. 混合有限元法基础及其应用[M]. 北京: 科学出版社. 2006.
[4]
Liu Y, Li H, Wang J. Error estimates of H1-Galerkin mixed finite method for Schr?dinger equation[J]. Appl. Math. J. Chinese Univ., 2009, 24(1): 83-89.
Shi D Y, Li M H. Superconvergence analysis of a stable conforming rectangular mixed finite elements for the linear elasticity problem[J]. J. Comput. Math., 2014, 32(2): 205-214.
[10]
Shi D Y, Zhang Y D. High accuracy analysis of a new nonconforming mixed finite element scheme for Sobolev equations[J]. Appl. Math. Comput., 2011, 218(7): 3176-3186.
Chang Q S, Jia E H. Difference schemes for solving the generalized nonlinear Schr?dinger equation[J]. J. Comput. Phys., 1999, 148: 397-415.
[13]
Tang Y F, Cao J W, Liu X T et al. Symplectic methods for the Ablowitz-Ladik discrete nonlinear Schr?dinger equation[J]. J. Phys. A: Math. Theor., 2007, 40: 2425.
Bao W Z, Cai Y Y. Uniform error estimates of finite difference methods for the nonlinear Schr?dinger equation with wave operator[J]. SIAM J. Numer. Anal., 2012, 50(2): 492-521.
[16]
Wang S S, Wang T C, Zhang L M. Numerical computations for N-coupled nonlinear Schr?dinger equations by split step spectral methods[J]. Appl. Math. Comput., 2013, 222: 438-452.
[17]
Lambers J V. Krylov subspace spectral methods for the time-dependent Schr?inger equation with non-smooth potentials[J]. Numer. Algor., 2009, 51(2): 239-280.
[18]
Lin Q, Liu X Q. Global superconvergence estimates of finite element method for Schr?dinger equation[J]. J. Comput. Math., 1998, 16(6): 521-526.
[19]
Antonopoulou D C, Plexousakis M. Discontinuous Galerkin methods for the linear Schr?inger equation in non-cylindrical domains[J]. Numer. Math., 2010, 115:585-608.
[20]
Karakashian O, Makridakis C. A space-time finite element for the nonlinear Schr?dinger equation: the discontinuous Galerkin method[J]. Math. Comput., 1998, 67(222): 479-499.
[21]
Karakashian O, Makridakis C. A space-time finite element for the nonlinear Schr?dinger equation: the continuous Galerkin method[J]. SIAM J. Numer. Anal., 1999, 36(6): 1779-1807.
[22]
Jin J C, Wu X N. Convergence of a finite element scheme for the two-dimensional time-dependent Schr?dinger equation in a long strip[J]. J. Comput. Appl. Math., 2010, 234: 777-793.