全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种基于最小二乘支持向量机的葡萄酒品质评判模型

DOI: 10.11830/ISSN.1000-5013.2013.01.0030

Keywords: 最小二乘支持向量机, 葡萄酒, 多元分类器, 交叉验证, 品质评判

Full-Text   Cite this paper   Add to My Lib

Abstract:

对源自UCI数据库的葡萄酒数据进行预处理,选取径向基函数作为最小二乘支持向量机的核函数;然后,根据“一对一”算法设计出最小二乘支持向量机多元分类器,并应用交叉验证算法对参数寻优,建立葡萄酒质量评判模型.同时,用BP神经网络、标准支持向量机分类器对葡萄酒进行训练.对比实验结果表明:最小二乘支持向量机比BP神经网络、标准支持向量机的平均分类准确率高,最高分类准确率为100%.

References

[1]  殷勇,邱明,刘云宏,等.基于遗传神经网络的酒类鉴别技术[J].农业机械学报,2003,34(6):104-106.
[2]  RAPTIS C G,SIETTOS C I,KIRANOUDIS C T,et al.Classification of aged wine distillates using fuzzy and neural network systems[J].Journal of Food Engineering,2000,46(4):267-275.
[3]  CORTEZ P,CERDEIRA A,ALMEIDA F,et al.Modeling wine preferences by data mining from physicochemical properties[J].Decision Support Systems,2009,47(4):547-557.
[4]  BELTRáN N H,DUARTE-MERMOUD M A,et al.Feature extraction and classiication of Chilean wines[J].Journal of Food Engineering,2006,75(1):1-10.
[5]  SUYKENS J K,VANDEWALLE J.Least squares support vector machine classifiers[J].Neural Processing Letter,1999,9(3):293-300.
[6]  VAPNIK V N.The nature of statistical learning theory[M].New York:Pringer-Verlag,1995.
[7]  VAPNIK V N.Statistical learning theory[M].New York:Pringer-Verlag,1998.
[8]  HE Xi-sheng,ZHE Wang,Cheng Jin,et al.A simplified multi-class support vector machine with reduced dual optimization[J].Pattern Recognition Letters,2012,33(1):71-82.
[9]  CRISTIANINI N,SHAWE-TAYLOR J.An introduction to support vector machines and other kernel-based learning methods[M].Cambridge:The Press Syndicate of Cambridge University,2000.
[10]  潘立登,李大字,马俊英.软测量技术原理与应用[M].北京:中国电力出版社,2009.
[11]  WANG Tai-yue,CHIANG Huei-min.One-against-one fuzzy support vector machine classifier: An approach to text categorization[J].Expert Systems with Applications,2009,36(6):10030-10034.
[12]  朱家元,郭基联,张恒喜,等.多元分类LS-SVM设计与装备保障性评估[J].装备指挥技术学院学报,2003,14(3):12-15.
[13]  VEENMAN C J,BOLCK A.A sparse nearest mean classifier for high dimensional multi-class problems[J].Pattern Recognition Letters,2011,32(6):854-859.
[14]  陈志刚,连香姣,于会媛,等.多元支持向量机在压缩机故障诊断中的应用[J].石油机械,2009,37(11):63-65.
[15]  LI Xiao-li,NIE Peng-cheng,QIU Zheng-jun,et al.Using wavelet transform and multi-class least square support vector machine in multi-spectral imaging classification of Chinese famous tea[J].Expert Systems with Applications,2011,38(9):11149-11159.
[16]  FU Jui-hsi,LEE Sing-ling.A muti-class SVM classification system based on learning methods from indistinguishable chinese official documents[J].Expert Systems with Applications,2012,39(7):3127-3134.
[17]  史峰,王小川,郁磊,等.MATLAB神经网络30个案例分析[M].北京:北京航空航天大学出版社,2010.
[18]  CHELOUAH R,SIARRY P.A hybrid method combining continuous tabu search and Nelder-Mead simplex algorithms for the global optimization of multiminima functions[J].European Journal of Operational Research,2005,161(3):636-654.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133