全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

粒子群优化算法

DOI: 10.3969/j.issn.1000-5013.2006.04.002

Keywords: 粒子群, 优化算法, 遗传算法, 惯性权重

Full-Text   Cite this paper   Add to My Lib

Abstract:

论述粒子群优化算法(PSO)的基本原理、特点、实现步骤,以及PSO的各种改进技术,包括基于PSO参数的改进技术(主要是惯性权重)、基于遗传算法进化机理的改进技术(受遗传算法启发提出的带交叉算子的PSO、带变异算子的PSO、带选择算子的PSO),以及其他算法融合的改进技术(模拟退火PSO、免疫PSO、混沌PSO),并总结PSO热点研究问题.

References

[1]  Kennedy J. The particle swarm:Social adaptation of knowledge [J]. Institute of Electrical and Electronics Engineers, 1997(4):303-308.
[2]  Shi Y, Eberhart R C. Parameter selection in particle swarm optimization [J]. Lecture Notes in Computer Science, 1998, (1447):591-600.
[3]  Clerc M. The swarm and the queen:Towards a deterministic and adaptive particle swarm optimization [J]. Institute of Electrical and Electronics Engineers, 1999(7):1951-1957.
[4]  Yasuda K, Ide A, Iwasaki N. Adaptive particle swarm optimization [J]. Institute of Electrical and Electronics Engineers, 2003, (10):1554-1559.
[5]  张丽平, 俞欢军, 陈德钊. 粒子群优化算法的分析与改进 [J]. 信息与控制, 2004(5):513-517.doi:10.3969/j.issn.1002-0411.2004.05.001.
[6]  王启付, 王战江, 王书亭. 一种动态改变惯性权重的粒子群优化算法 [J]. 中国机械工程, 2005, (11):945-948.doi:10.3321/j.issn:1004-132X.2005.11.002.
[7]  Eberhart R C, Shi Y. Comparison between genetic algorithms and particle swarm optimization [J]. Lecture Notes in Computer Science, 1998, (1447):611-616.
[8]  Lovbjerg M, Rasmussen T K, Krink T. Hybrid particle swarm optimizer with breeding and subpopulations [J]. Institute of Electrical and Electronics Engineers, 2001(7):115-118.
[9]  吕振肃, 侯志荣. 自适应变异的粒子群优化算法 [J]. 电子学报, 2004(3):416-420.doi:10.3321/j.issn:0372-2112.2004.03.016.
[10]  付国江, 王少梅, 李宁. 一种新的PSO变异策略 [J]. 武汉理工大学学报(信息与管理工程版), 2005(2):192-196.doi:10.3963/j.issn.1007-144X.2005.02.052.
[11]  吴晓军, 薛惠锋, 李憋. GA-PSO混合规划算法 [J]. 西北大学学报(自然科学版), 2005(1):39-43.doi:10.3321/j.issn:1000-274X.2005.01.011.
[12]  高尚, 杨静宇, 吴小俊. 基于模拟退火算法思想的粒子群优化算法 [J]. 计算机应用与软件, 2005(1):103-104, 80.doi:10.3969/j.issn.1000-386X.2005.01.042.
[13]  高鹰, 谢胜利. 混沌粒子群优化算法 [J]. 计算机科学, 2004(8):13-15.doi:10.3969/j.issn.1002-137X.2004.08.004.
[14]  杨俊杰, 周建中, 喻菁. 基于混沌搜索的粒子群优化算法 [J]. 计算机工程与应用, 2005, (16):69-71.doi:10.3321/j.issn:1002-8331.2005.16.021.
[15]  Jiang Chuanwen, Etorre B. A self-adaptive chaotic particle swarm algorithm for short term hydroelectric system scheduling in deregulated environment [J]. Energy Conversion and Management, 2005, (17):2689-2696.
[16]  Trelea I C. The particle swarm optimization algorithm:convergence analysis and parameter selection [J]. Information Processing Letters, 2003(6):317-325.doi:10.1016/S0020-0190(02)00447-7.
[17]  Naka S, Genji T, Yura T. Practical distribution state estimation using hybrid particle swarm optimization [J]. Institute of Electrical and Electronics Engineers, 2001(2):815-820.
[18]  Eberhart R C, Shi Y. Guest editorial special Issue on particle swarm optimization [J]. IEEE Transactions on Evolutionary Computation, 2004(3):201-203.
[19]  Kennedy J, Eberhart R C. Particle swarm optimization [J]. Institute of Electrical and Electronics Engineers, 1995, (11):1942-1948.
[20]  Eberhart R C, Kennedy J. A new optimizer using particle swarm theory [J]. Institute of Electrical and Electronics Engineers, 1995, (10):39-43.
[21]  Shi Y, Eberhart R C. A modified particle swarm optimizer [J]. Institute of Electrical and Electronics Engineers, 1998(5):69-73.
[22]  Shi Y, Eberhart R C. Empirical study of particle swarm optimization [J]. Institute of Electrical and Electronics Engineers, 1999(7):1945-1950.
[23]  Eberhart R C, Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization [J]. Institute of Electrical and Electronics Engineers, 2000(7):84-88.
[24]  Shi Y, Eberhart R C. Fuzzy adaptive particle swarm optimization [J]. Institute of Electrical and Electronics Engineers, 2001(5):101-106.
[25]  Chatterjee, Siarry P. Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization [J]. Computers and Operations Research, 2006(3):859-871.doi:10.1016/j.cor.2004.08.012.
[26]  Suganthan P N. Particle swarm optimizer with neighborhood operator [J]. Institute of Electrical and Electronics Engineers, 1999(7):1958-1962.
[27]  Robinson J, Sinton S, Rahmat-Samii Y. Particle swarm optimization, genetic algorithm, and their hybrids:Optimization of a profiled corrugated horn antenna [J]. IEEE Antennas and Propagation Society International Symposium, 2002(1):314-317.
[28]  Higashi N, Iba H. Particle swarm optimization with Gaussian mutation [J]. Institute of Electrical and Electronics Engineers, 2003(4):72-79.
[29]  李宁, 孙德宝, 岑翼刚, 邹彤. 带变异算子的粒子群优化算法 [J]. 计算机工程与应用, 2004, (17):12-14, 35.doi:10.3321/j.issn:1002-8331.2004.17.004.
[30]  Angeline P J. Using selection to improve particle swarm optimization [J]. Institute of Electrical and Electronics Engineers, 1998(5):84-89.
[31]  高鹰, 谢胜利. 基于模拟退火的粒子群优化算法 [J]. 计算机工程与应用, 2004(1):47-50.doi:10.3321/j.issn:1002-8331.2004.01.014.
[32]  窦全胜, 周春光, 马铭. 粒子群优化的两种改进策略 [J]. 计算机研究与发展, 2005(5):897-904.
[33]  高鹰, 谢胜利. 免疫粒子群优化算法 [J]. 计算机工程与应用, 2004(6):4-6, 7.doi:10.3321/j.issn:1002-8331.2004.06.002.
[34]  Jiang Chuanwen, Etorre B. A hybrid method of chaotic particle swarm optimization and linear interior for reactive power optimization [J]. Mathematics and Computers in Simulation, 2005(1):57-65.doi:10.1016/j.matcom.2004.10.003.
[35]  Clerc M, Kennedy J. The particle swarm:Explosion stability and convergence in a multi-dimensional complex space [J]. IEEE Transactions on Evolutionary Computation, 2002(1):58-73.
[36]  Yoshida H, Fukuyama Y, Takayama S. A particle swarm optimization for reactive power and voltage control in electric power systems considering voltage security assessment [J]. Institute of Electrical and Electronics Engineers, 1999, (10):497-502.
[37]  Van-Den B F, Engelbrecht A P. Training product unit networks using cooperative particle swarm optimizers [J]. Institute of Electrical and Electronics Engineers, 2001(7):126-131.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133