非Noether环的完备化方法
Keywords: 柯西序列,完备化,Swan方图
Abstract:
设R是交换环,M是Rˉ模,I是R的有限生成理想,满足∩∞n=0In=0,R^是R的Iˉadic完备化,M^是M的Iˉadic完备化.证明了若R是凝聚环,则R^是平坦Rˉ模,且若I〈J(R),则R^还是忠实平坦Rˉ模.由此证明了若R^RM是有限生成(有限表现或有限生成投射)的R^ˉ模,则M是有限生成(有限表现或有限生成投射)Rˉ模.最后用Swan的方法证明了若R是凝聚整环,u∈J(R)是素元,∩∞n=0(un)=0,M是不可分解的有限生成投射Rˉ模,则M/uM是不可分解的投射R/(u)ˉ模.
References
[1] | 余柏林,汪明义.关于∏凝聚环的推广[J].四川师范大学学报:自然科学版,2005,28(3):278ˉ281.
|
[2] | Kim H.Moduleˉtheoretic characterizations of tˉlinkative domains[J].Commun Algebra,2008,36:1649ˉ1670.
|
[3] | Matsumura H.Commutative Ring Theory[M].New York:CambridgeUniversity Press,1986.
|
[4] | VasconcelosW V,Simis A.Projectivemodules overR[X],R a valuation ring are free[J].Notices AmMath Soc,1971,18:805.
|
[5] | Swan R G.A simple proof ofGabber’s theorem on projectivemodules over a localized local ring[J].Proc AMS,1988,103:1025ˉ1030.
|
[6] | Hartshorne R.Algebraic Geometry[M].New York,Heidelberg,Berlin:SpringerˉVerlag,1977.
|
[7] | JonesM F,TeplyM L.Coherent rings of finite weak global dimension[J].Commun Algebra,1982,10:493ˉ503.
|
[8] | Matsumura H.Commutative Algebra[M].2nd ed.California:The Benjamin/Cummings Publishing Company,Inc,1980.
|
[9] | Rotman J J.An Introduction toHomologicalAlgebra[M].California:The Benjamin Publishing Company,Inc,1980.
|
[10] | VasconcelosW V.On projective modules of finite rank[J].Proc AMS,1969,22:430ˉ433.
|
[11] | W ang Fangˉgui,Tang Gaoˉhua.Reflexive modules over coherentGCDˉdomains[J].Commun Algebra,2005,33:3283ˉ3292.
|
[12] | 唐再良,张清论.Clean环的性质与扩张[J].西华师范大学学报:自然科学版,2007,28(3):246ˉ248.
|
[13] | Suslin A A.Projective modules over a polynomial ring are free[J].DoklAcad Nauk SSSR,1976,5:1160ˉ1164.
|
Full-Text