全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

非Noether环的完备化方法

Keywords: 柯西序列,完备化,Swan方图

Full-Text   Cite this paper   Add to My Lib

Abstract:

设R是交换环,M是Rˉ模,I是R的有限生成理想,满足∩∞n=0In=0,R^是R的Iˉadic完备化,M^是M的Iˉadic完备化.证明了若R是凝聚环,则R^是平坦Rˉ模,且若I〈J(R),则R^还是忠实平坦Rˉ模.由此证明了若R^RM是有限生成(有限表现或有限生成投射)的R^ˉ模,则M是有限生成(有限表现或有限生成投射)Rˉ模.最后用Swan的方法证明了若R是凝聚整环,u∈J(R)是素元,∩∞n=0(un)=0,M是不可分解的有限生成投射Rˉ模,则M/uM是不可分解的投射R/(u)ˉ模.

References

[1]  余柏林,汪明义.关于∏凝聚环的推广[J].四川师范大学学报:自然科学版,2005,28(3):278ˉ281.
[2]  Kim H.Moduleˉtheoretic characterizations of tˉlinkative domains[J].Commun Algebra,2008,36:1649ˉ1670.
[3]  Matsumura H.Commutative Ring Theory[M].New York:CambridgeUniversity Press,1986.
[4]  VasconcelosW V,Simis A.Projectivemodules overR[X],R a valuation ring are free[J].Notices AmMath Soc,1971,18:805.
[5]  Swan R G.A simple proof ofGabber’s theorem on projectivemodules over a localized local ring[J].Proc AMS,1988,103:1025ˉ1030.
[6]  Hartshorne R.Algebraic Geometry[M].New York,Heidelberg,Berlin:SpringerˉVerlag,1977.
[7]  JonesM F,TeplyM L.Coherent rings of finite weak global dimension[J].Commun Algebra,1982,10:493ˉ503.
[8]  Matsumura H.Commutative Algebra[M].2nd ed.California:The Benjamin/Cummings Publishing Company,Inc,1980.
[9]  Rotman J J.An Introduction toHomologicalAlgebra[M].California:The Benjamin Publishing Company,Inc,1980.
[10]  VasconcelosW V.On projective modules of finite rank[J].Proc AMS,1969,22:430ˉ433.
[11]  W ang Fangˉgui,Tang Gaoˉhua.Reflexive modules over coherentGCDˉdomains[J].Commun Algebra,2005,33:3283ˉ3292.
[12]  唐再良,张清论.Clean环的性质与扩张[J].西华师范大学学报:自然科学版,2007,28(3):246ˉ248.
[13]  Suslin A A.Projective modules over a polynomial ring are free[J].DoklAcad Nauk SSSR,1976,5:1160ˉ1164.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133