全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

紧算子的广义正则性

, PP. 788-790

Keywords: Banach格,正则算子,广义正则算子,紧算子

Full-Text   Cite this paper   Add to My Lib

Abstract:

在Banach格及其上的算子理论中,正则算子是一类非常有趣的算子,它扮演着重要的角色.目前,国内外有很多关于算子的正则性的研究成果,但是没有准确的方法来说明连续线性算子的正则性.从而,很自然地会考虑到条件比它要弱的算子,这就是Banach格上的广义正则算子.首先从理论上证明了非广义正则紧算子的存在性;然后分别对定义域和值域空间是离散的和连续的两种情形,具体构造出了非广义正则紧算子的反例.这两个反例同时也说明了M-和L-弱紧算子不是广义正则的.

References

[1]  Wickstead A W. Regular operators between Banach lattices\[C\]//Positivity(Trends in Mathematics). Switzerland:Birkhuser Basel,2007:255-279.
[2]  Birnbaum D A. Preregular maps between Banach lattices\[J\]. Bull Austrl Math Soc,1974,11:231-254.
[3]  Chen F, Chen Z L. Notes on preregular operators in Banach lattices\[J\]. J Southwest Jiaotong University: English Edition,2009(4):363-365.
[4]  Meyer-Nieberg P. Banach Lattices\[M\]. New York:Springer-Verlag,1991.
[5]  Abramovich Y A. When Each Continuous Operator is Regular\[M\]. Oxford:Oxford Univ Press,1990:133-140.
[6]  Krengel U. ber den Absolutbetrag stetiger linearer Operatoren und seine Anwendung auf ergodische Zerlegungen\[J\]. Math Scand,1963,13:151-187.
[7]  Chen Z L, Wickstead A W. Some applications of Rademacher sequences in Banach lattices\[C\]//Positivity(Trends in Mathematics). Switzerland:Birkhuser Basel,1998:171-191.
[8]  Chen Z L, Wickstead A W. Equalities involving the modulus of an operator\[J\]. Math Proc R Ir Acad,1999,A99:85-92.
[9]  张恭庆,林源渠. 泛函分析讲义(上册)\[M\]. 北京:北京大学出版社,1987.
[10]  Alpay S, Altin B, Tonyali C. On property (b) of vector lattices\[J\]. Positivity,2003,7:135-139.
[11]  Chen Z L, Martin R W. On finite elements in lattices of regular operators\[C\]//Positivity(Trends in Mathematics). Switzerland:Birkhuser Basel,2007:563-574.
[12]  张红玲,陈滋利. 抽象凸空间的广义向量平衡问题\[J\]. 四川师范大学学报:自然科学版,2010,33(4):447-449.
[13]  Alpay S, Altin B, Tonyali C. A note on Riesz spaces with property \[J\]. J Czech Math,2006,131:765-772.
[14]  Birol A. On b-weakly compact operators on Banach lattices\[J\]. Taiwanese J Math,2007,29(1):143-150.
[15]  Safak A, Birol A. A note on b-weakly compact operators\[C\]//Positivity(Trends in Mathematics). Switzerland:Birkhuser Basel,2007:575-582
[16]  Cartwright D J, Lotz H P. Some characterizations of and spaces\[J\]. Math Z,1975,142(2):97-103.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133