全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Q0-SM环及其w-全局变换环

Keywords: Q0-SM环,w-linked扩张,半正则极大w-理想,w-全局变换环

Full-Text   Cite this paper   Add to My Lib

Abstract:

设R是有零因子的交换环.环R称为弱Q0-SM环是指R满足半正则w-理想的升链条件;环R称为Q0-SM环是指R是弱Q0-SM环且若{In}是R的半正则v-理想的降链,∩In是半正则理想,则{In}稳定.给出弱Q0-SM环的等价刻画,也给出Q0-H环,Q0-TV环的定义,并对它们的性质和它们与Q0-SM环的关系进行了讨论.然后定义了一般交换环的w-全局变换环Rw*,并证明了R是Q0-SM环,则Rw*也是Q0-SM环,且t-dim(Rw*)=t-dim(R)-1.

References

[1]  Yin H Y, Wang F G, Zhu X S, et al. w-Modules over commutative rings[J]. J Korean Math Soc,2011,48(1):207-222.
[2]  Rotman J J. An Introduction to Homological Algebra[M]. New York:Academic Press,1979.
[3]  Xie L, Wang F G, Yang T. On w-linked overrings[J]. J Math Research & Exposition,2011,31(2):337-346.
[4]  Brewer J W, Costa D L, McCrimmon K. Seminormality and root closure in polynomial rings and algebraic curves[J]. J Algebra,1979,58:217-226.
[5]  Lucas T G. Characterizing when R[X] is integrally closed[J]. Proc Am Math Soc,1989,105:861-867.
[6]  Lucas T G. The Mori property in rings with zero divisors[J]. Lecture Notes Pure Appl Math,2004,236:379-400.
[7]  王芳贵. 交换环与星型算子理论[M]. 北京:科学出版社,2006.
[8]  王芳贵. 有限表现型模与w-凝聚环[J]. 四川师范大学学报:自然科学版,2010,33(1):1-9.
[9]  赵松泉,王芳贵,陈翰林. 交换环上的w-模是平坦模[J]. 四川师范大学学报:自然科学版,2010,35(3):364-366.
[10]  Huckaba J A. Commutative Rings with Zero Divisors[M]. New York:Marcel Dekker Inc,1979.
[11]  Dessagnes N. Intersections d’anneaux de Mori-exemples[J]. Port Math,1987,44:379-392.
[12]  Wang F G, McCasland R L. On strong Mori domains[J]. Pure Appl Algebra,1999,135:155-165.
[13]  熊涛,王芳贵,胡葵. 余纯投射模与CPH环[J]. 四川师范大学学报:自然科学版,2013,36(2):198-201.
[14]  Badawi A, Lucas T G. On phi-Mori rings[J]. Houston J Math,2006,32:1-32.
[15]  Chang G W. Strong Mori domains and the ring D[X]Nv[J]. J Pure Appl Algebra,2005,197:293-304.
[16]  Doering S, Lequain Y. Chains of prime ideals in polynomial rings[J]. J Algebra,1982,78:163-180.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133