OALib Journal期刊
ISSN: 2333-9721
费用:99美元
|
|
|
Q0-SM环及其w-全局变换环
Keywords: Q0-SM环,w-linked扩张,半正则极大w-理想,w-全局变换环
Abstract:
设R是有零因子的交换环.环R称为弱Q0-SM环是指R满足半正则w-理想的升链条件;环R称为Q0-SM环是指R是弱Q0-SM环且若{In}是R的半正则v-理想的降链,∩In是半正则理想,则{In}稳定.给出弱Q0-SM环的等价刻画,也给出Q0-H环,Q0-TV环的定义,并对它们的性质和它们与Q0-SM环的关系进行了讨论.然后定义了一般交换环的w-全局变换环Rw*,并证明了R是Q0-SM环,则Rw*也是Q0-SM环,且t-dim(Rw*)=t-dim(R)-1.
References
[1] | Yin H Y, Wang F G, Zhu X S, et al. w-Modules over commutative rings[J]. J Korean Math Soc,2011,48(1):207-222.
|
[2] | Rotman J J. An Introduction to Homological Algebra[M]. New York:Academic Press,1979.
|
[3] | Xie L, Wang F G, Yang T. On w-linked overrings[J]. J Math Research & Exposition,2011,31(2):337-346.
|
[4] | Brewer J W, Costa D L, McCrimmon K. Seminormality and root closure in polynomial rings and algebraic curves[J]. J Algebra,1979,58:217-226.
|
[5] | Lucas T G. Characterizing when R[X] is integrally closed[J]. Proc Am Math Soc,1989,105:861-867.
|
[6] | Lucas T G. The Mori property in rings with zero divisors[J]. Lecture Notes Pure Appl Math,2004,236:379-400.
|
[7] | 王芳贵. 交换环与星型算子理论[M]. 北京:科学出版社,2006.
|
[8] | 王芳贵. 有限表现型模与w-凝聚环[J]. 四川师范大学学报:自然科学版,2010,33(1):1-9.
|
[9] | 赵松泉,王芳贵,陈翰林. 交换环上的w-模是平坦模[J]. 四川师范大学学报:自然科学版,2010,35(3):364-366.
|
[10] | Huckaba J A. Commutative Rings with Zero Divisors[M]. New York:Marcel Dekker Inc,1979.
|
[11] | Dessagnes N. Intersections d’anneaux de Mori-exemples[J]. Port Math,1987,44:379-392.
|
[12] | Wang F G, McCasland R L. On strong Mori domains[J]. Pure Appl Algebra,1999,135:155-165.
|
[13] | 熊涛,王芳贵,胡葵. 余纯投射模与CPH环[J]. 四川师范大学学报:自然科学版,2013,36(2):198-201.
|
[14] | Badawi A, Lucas T G. On phi-Mori rings[J]. Houston J Math,2006,32:1-32.
|
[15] | Chang G W. Strong Mori domains and the ring D[X]Nv[J]. J Pure Appl Algebra,2005,197:293-304.
|
[16] | Doering S, Lequain Y. Chains of prime ideals in polynomial rings[J]. J Algebra,1982,78:163-180.
|
Full-Text
|
|
Contact Us
service@oalib.com QQ:3279437679 
WhatsApp +8615387084133
|
|