全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

无穷维空间中新Farkas型结果

Keywords: Farkas型结果,Fenchel对偶问题,FenchelˉLagrange对偶问题,强(弱)对偶,共轭函数,有限个和无限个凸限制

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用凸优化问题中的共轭对偶定理,研究了两类对偶问题,即广义Fenchel对偶问题和FenchelˉLagrange对偶问题,提出了有限维空间中具有有限个和无限个凸限制的不等式系统的新Farkas型结果.在无穷维空间中推广了他们的结论,得到无穷维空间中有限个和无限个凸限制的不等式系统的新Farkas型结果.

References

[1]  Farkas J.Theorie der einfachen ungleichungen[J].J Reine AngewMath,1901,124:1ˉ27.
[2]  Glover B M,JeyakumarV,OettliW.A Farkas lemma for difference sublinear systems and quasidifferentiable programming[J].Math Programming,1994,63:109ˉ125.
[3]  Gwinner J.Results ofFarkas type[J].Numer FuntAnalOptim,1987,9:471ˉ520.
[4]  Gwinner J.Corrigendum and addendum to results ofFarkas type[J].Numer FuntAnalOptim,1989,10:415ˉ418.
[5]  JeyakumarV.Charactererizing set containments involing infinite convex constraints and reverseˉconvex constraints[J].SIAM J Optim,13(4):947ˉ959.
[6]  李凤莲,丁协平.局部凸拓朴线性空间中的广义Farkas引理[J].四川师范大学学报:自然科学版,2005,28(4):417ˉ418.
[7]  BotR I,W anka G.Farkasˉtype results with conjugate funtions[J].SIAM JOptim,2005,15(2):540ˉ554.
[8]  Zualinescu C.Convex Analysis in GeneralVector Spaces[M].Sigapore:World Scientific,2002.
[9]  Ha CW.On systems of convex inequalities[J].JMath AnalAppl,1979,68:25ˉ34.
[10]  Ekeland I,Temam R.Convex Analysis and Variational Problems[M].Amsterdam:NorthˉHolland,1976.
[11]  刘小兰,周密.广义凸优化问题的FenchelˉLagrange对偶[J].四川师范大学学报:自然科学版,2008,31(1):30ˉ33.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133