无穷维空间中新Farkas型结果
Keywords: Farkas型结果,Fenchel对偶问题,FenchelˉLagrange对偶问题,强(弱)对偶,共轭函数,有限个和无限个凸限制
Abstract:
利用凸优化问题中的共轭对偶定理,研究了两类对偶问题,即广义Fenchel对偶问题和FenchelˉLagrange对偶问题,提出了有限维空间中具有有限个和无限个凸限制的不等式系统的新Farkas型结果.在无穷维空间中推广了他们的结论,得到无穷维空间中有限个和无限个凸限制的不等式系统的新Farkas型结果.
References
[1] | Farkas J.Theorie der einfachen ungleichungen[J].J Reine AngewMath,1901,124:1ˉ27.
|
[2] | Glover B M,JeyakumarV,OettliW.A Farkas lemma for difference sublinear systems and quasidifferentiable programming[J].Math Programming,1994,63:109ˉ125.
|
[3] | Gwinner J.Results ofFarkas type[J].Numer FuntAnalOptim,1987,9:471ˉ520.
|
[4] | Gwinner J.Corrigendum and addendum to results ofFarkas type[J].Numer FuntAnalOptim,1989,10:415ˉ418.
|
[5] | JeyakumarV.Charactererizing set containments involing infinite convex constraints and reverseˉconvex constraints[J].SIAM J Optim,13(4):947ˉ959.
|
[6] | 李凤莲,丁协平.局部凸拓朴线性空间中的广义Farkas引理[J].四川师范大学学报:自然科学版,2005,28(4):417ˉ418.
|
[7] | BotR I,W anka G.Farkasˉtype results with conjugate funtions[J].SIAM JOptim,2005,15(2):540ˉ554.
|
[8] | Zualinescu C.Convex Analysis in GeneralVector Spaces[M].Sigapore:World Scientific,2002.
|
[9] | Ha CW.On systems of convex inequalities[J].JMath AnalAppl,1979,68:25ˉ34.
|
[10] | Ekeland I,Temam R.Convex Analysis and Variational Problems[M].Amsterdam:NorthˉHolland,1976.
|
[11] | 刘小兰,周密.广义凸优化问题的FenchelˉLagrange对偶[J].四川师范大学学报:自然科学版,2008,31(1):30ˉ33.
|
Full-Text