全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

多重调和基样条对多元带有限函数的恢复

, PP. 176-178

Keywords: Paley-Wiener空间,多重调和基样条,恢复

Full-Text   Cite this paper   Add to My Lib

Abstract:

用泛函分析以及调和分析的方法和手段,讨论了利用多重调和基样条对多元带有限函数在L2-尺度下的无误差恢复,将样条函数和带有限函数这两个重要逼近工具联系起来,并由此得到了多元带有限函数的等价刻画,推广了文献中的结果.同时,建立了分别利用多元带有限函数空间(Paley-Wiener空间)和L2(Rd)中k-重调和基样条空间在L2-尺度下对L2(Rd)中函数最佳逼近这两个极值问题之间的联系

References

[1]  Nikolskii S M. Approximation of Functions of Several Variables and Imbedding Theorems[M]. New York:Springer-Verlag,1975.
[2]  Chen Guang-gui, Fang Gen-sun. Discrete nature of multivatiate Paley-Wiener space[J]. Progress in Natural Science,2003,13:300-303.
[3]  Sun W. Density of wavelet frames[J]. Appl Comput Anal,2007,22:264-272.
[4]  Fang Gen-sun. Cardinal spline interpolation from H1(Z) to L1(R) [J]. J Proc Am Soc,2000,128:2597-2601.
[5]  王建军,房艮孙. 多元样本定理和混淆误差界的估计[J]. 应用数学学报,1996,19:481-488.
[6]  Madych W R. Polyharmonic cardinal spline[J]. J Approx Theory,1990,60:141-156.
[7]  Madych W R, Nelson S A. Polyharmonic splines, multiscale analysis and entire functions[C]//Multivariate Approximation and Interpolation. Haussmann W, Jetter K,eds. Basel:Birkhuser,1990:205-222.
[8]  Fang Gen-sun, Chen Xue-dong. Equivalent characterization of entire functions of exponential type[J]. J Analysis Mathematics,2000,26:275-286.
[9]  Chen Guang-gui, Fang Gen-sun. Discrete characterization on the Paley-Wiener space with several variviables[J]. Acta Math Appl Sincia,2000,26(4):396-404.
[10]  陈广贵,房艮孙. 多元非正规样本定理[J]. 中国科学,2009,A39:1003-1010.
[11]  Butzer P L, Higgins J R, Stens R L. Classical and approximate sampling theorems,studies in the Lp(R) and the uniform norm[J]. J Approx Theory,2005,137:250-263.
[12]  Aldroubi A, Grochenig K. Nonuniform sampling and reconstruction in shift-invariant spaces[J]. SIAM Rev,2001,43:585-620.
[13]  Chen guang-gui, Fang Gen-sun. Rieze basis, complete interpolating sequence and multivatiate irregular sampling theorem[J]. J East Approx,2005,11:35-46.
[14]  Schoenberg I J. Cardinal Interpolation[M]. Philadelphia:SIAM,1973.
[15]  Chang Mao-li. The behavior of polyhaymonic cardinal spline as their degree tends to infinity[J]. J Approx Theory,1994,76:287-302.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133