OALib Journal期刊
ISSN: 2333-9721
费用:99美元
|
|
|
加权Dirichlet空间上紧Toeplitz算子
, PP. 36-41
Keywords: 加权Dirichlet空间,Toeplitz算子,紧算子
Abstract:
对α>-1,若算子S是加权Dirichlet空间Dα上有限个Toeplitz算子乘积的有限和,利用不同于加权Dirichlet空间再生核的一种新奇异积分核,得到了S为紧算子的充要条件是当z趋于单位圆盘边界时,S的类Berezin变换趋于0.又利用与Bermgan空间不同的酉算子Uz,定义了算子乘积Sz=UzSUz,得到S为紧算子的充要条件是当z趋于单位圆盘边界时,Szw在Dα内弱收敛到0.
References
[1] | Zheng D C. Toeplitz and Hankel operators[J]. Integral Equations and Operator Theory,1989,12:280-299.
|
[2] | Rochberg R, Wu Z J. Toeplitz operators on Dirichlet spaces[J]. Integral Equations and Operator Theory,1992,15:325-342.
|
[3] | Wu Z J. Hankel and Toeplitz opreators on Dirichlet spaces[J]. Integral Equations and Operator Theory,1992,15:503-525.
|
[4] | Cao G F. Fredholm properties of Toeplitz operators on Dirichlet spaces[J]. Pacific J Math,1999,2:209-223.
|
[5] | 于涛,孙善利. 加权Bergman空间上的紧算子[J]. 数学学报,2001,44:233-240.
|
[6] | Zhu K H. Positive Toeplitz operators on weighted Bergman spaces of bounded symmetric domains[J]. J Oper Theory,1988,20:329-357.
|
[7] | Korenblum B, Zhu K H. An application of Tauberian theorems to Toeplitz operators[J]. J Oper Theory,1995,33:353-368.
|
[8] | Stroethoff K. Compact Hankel operators on the Bergman space[J]. Illinois J Math,1998,34:159-174.
|
[9] | Axler S, Zheng D C. Compact operators via the Berezin transform[J]. Indiana Univ Math J,1998,2:387-400.
|
[10] | Douglas R G. Banach Algebra Techniques in Operator[M]. New York, London:Academics Press,1972.
|
[11] | 王晓峰,夏锦. Dirichlet空间上一类Toeplitz算子[J]. 四川师范大学学报:自然科学版,2006,29(5):577-579.
|
[12] | 王晓峰,夏锦. Dirichlet空间上Toeplitz算子指标及其K群[J]. 四川师范大学学报:自然科学版,2008,31(3):377-379.
|
[13] | 朱俊逸. 常型Dirac算子的谱分解[J]. 郑州大学学报:理学版,2003,35(1):11-15.
|
Full-Text
|
|
Contact Us
service@oalib.com QQ:3279437679 
WhatsApp +8615387084133
|
|