全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

非游荡算子的伪轨跟踪性质的推广及应用

, PP. 640-645

Keywords: 非游荡算子,超循环算子,不变子空间,伪轨,伪轨跟踪性质

Full-Text   Cite this paper   Add to My Lib

Abstract:

伪轨跟踪性质是动力系统中的重要概念之一,它与系统的稳定性以及混沌都有密切的联系.然而伪轨的概念仅仅局限在有限维紧的度量空间中,将这一工作发展到无穷维可分Banach空间上的线性算子的研究之中,在无穷维可分Banach空间中引进了α伪轨,定义了非游荡常数,给出了在Banach序列空间及其具有物理背景的空间中非游荡算子的α伪轨的例子,运用泛函分析的方法对非游荡算子的伪轨跟踪性质进行了推广,最后利用此性质得到了几个重要的结论,推进和完善了对非游荡算子性质的研究.

References

[1]  Godefroy G, Shapiro J H. Operators with dense, invariant cyclic vector manifolds\[J\]. J Funct Anal,1991,98:229-269.
[2]  Tian Li-xin, Lu Dian-chen. The property of non-wandering operator\[J\]. Appl Math Mech:Engl Ed,1996,17(2):155-161.
[3]  Tian Li-xin, Zhou Jiang-bo, Liu Xun, et al. Non-wandering operators in Banach space\[J\]. International J Mathematics and Mathematical Sciences,2005,24:3895-3908.
[4]  Tian Li-xin, Wang Ming-gang. Pseudo orbit tracing property of non-wandering operator\[J\]. International J Nonlinear Science,2007,1(3):3-7.
[5]  Wang Ming-gang. Non-wandering property of differentiation operator\[J\]. International J Nonlinear Science,2008,2(8):21-27.
[6]  Wang Ming-gang, Xu Hua. Non-wandering operator in Bargmann space\[J\]. J Mathematics Research,2010,2(2):34-38.
[7]  王明刚,许华. 非游荡算子的拓扑稳定性\[J\]. 山东大学学报:理学版,2011,46(12):1-8.
[8]  MacCluer C R. Chaos in linear distributed systems\[J\]. J Dyn Syst Meas Control,1992,114(2):322-324.
[9]  Walters P. On the pseudo-orbit tracing property and its relationship to stability\[C\]//Lecture Notes in Math. Berlin:Springer-Verlag,1991,668:191-210.
[10]  Anosov V M. Geodesic flows on closed Riemannian manifolds with negative curvature\[J\]. Trudy Mat Inst Steklov,1967,90:3-210.
[11]  Barge M, Swanson R. Pseudo orbit and topological entropy\[J\]. Proc Am Math Soc,1990,109:559-566.
[12]  Gedeon T, Kuchta M. Shadowing property of continuous maps\[J\]. Proc Am Math Soc,1992,115:271-281.
[13]  张蕾. Hardy空间上的非游荡复合算子\[J\]. 山东大学学报:理学版,2009,44(3):81-83.
[14]  Qian Huan. Recurrent set and retability of non-wandering operator\[J\]. International J Nonlinear Science,2009,7(1):108-112.
[15]  Tian Li-xin, Shi Shao-guang, Ren Li-hong. The invariance of non-wandering operator under small perturbation\[J\]. International J Nonlinear Science,2008,2:28.
[16]  Qian Huan, Zhang Jian-mei. Products of recurrent non-wandering semigroups\[J\]. International J Nonlinear Science,2009,8(2):218-222.
[17]  Li Yi-qing, Tian Li-xin, Wu Yu-hai. On the bifurcation of traveling wave solution of generalized Camassa-Holm equation\[J\]. International J Nonlinear Science,2008,6(1):34-45.
[18]  Tian Li-xin, Shen Chun-yu. Optimal control of the b-family equation\[J\]. International J Nonlinear Science,2007,4(1):3-9.
[19]  Chen Wen-xia, Tian Li-xin, Deng Xiao-yan. The global attractor and numerical simulation of a forced weakly damped MKdV equation\[J\]. Nonlinear Analysis:Real World Applications,2009,10(3):1822-1837.
[20]  Tian Li-xin, Shen Chun-yu, Ding Dan-ping. Optimal control of the viscous Camassa-Holm equation\[J\]. Nonlinear Analysis:Real World Applications,2009,10(1):519-530.
[21]  Tian Li-xin, Shi Qing, Liu Yue. Boundary control of viscosity Degasperis-Procesi equation\[J\]. Nonlinear Analysis:Theory, Methods and Applications,2009,71(1/2):382-390.
[22]  Ding Zhan-wen, Tian Li-xin, Yang Hong-lin. Uilibrium path in oligopolistic market of nonrenewable resource\[J\]. Nonlinear Analysis:Real World Applications,2008,9(5):1918-1927.
[23]  Tian Li-xin, Yin Jiu-li. Multi-compacton and double symmetric peakon for generalized Ostrovsky equation\[J\]. Chaos, Solitons Fractals,2008,35(5):991-995.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133