Li Y B, Lee H G, Jeong D, et al. An unconditionally stable hybrid numerical method for solving the Allen-Cahn equation[J]. Comput Math Appl,2010,60:1591-1606.
[2]
Shen J, Yang X. Numerical approximations of Allen-Cahn and Cahn-Hilliard equations[J]. Discrete Contin Dyn Syst,2010,A28:1669-1691.
[3]
Allen S M, Cahn J W. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening[J]. Acta Metall,1979,27:1085-1095. [4] Bene M, Chalupecky V, Mikula K. Geometrical image segmentation by the Allen-Cahn equation[J]. Appl Numer Math,2004,51:187-205.
[4]
Dobrosotskaya J A, Bertozzi A L. A wavelet-Laplace variational technique for image deconvolution and inpainting[J]. IEEE Trans Image Process,2008,17:657-663.
[5]
Feng X, Prohl A. Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows[J]. Numer Math,2003,94:33-65.
[6]
Ilmanen T. Convergence of the Allen-Cahn equation to Brakke’s motion by mean curvature[J]. Diff Geom,1993,38:417-461.
[7]
Yang X, Feng J J, Liu C, et al. Numerical simulations of jet pinching-off and drop formation using an energetic variational phase-field method[J]. Comput Phys,2004,218:417-428.
[8]
Cheng M, Warren J A. An efficient algorithm for solving the phase field crystal model[J]. Comput Phys,2008,227:6241-6248.
[9]
Wheeler A A, Boettinger W J, McFadden G B. Phase-field model for isothermal phase transitions in binary alloys[J]. Phys Rev,1992,A45:7424-7439.
[10]
Du Q, Nicolaides R A. Numerical analysis of a continuum model of phase transition[J]. SIAM Numer Anal,1991,28(5):1310-1322.
[11]
Feng X B, Prohl A. Error analysis of a mixed finite element method for the Cahn-Hilliard equation[J]. Numer Math,2004,99(1):47-84.
[12]
Feng X B, Prohl A. Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows[J]. Numer Math,2003,94(1):33-65.