Levine H A. Instability and nonexistence of global solutions to nonlinear wave equations of the form Putt=Au+F(u)[J]. Trans Am Math Soc,1974,192:1-21.
[2]
Alves C O. On existence, uniform decay rates and blow up for solutions of systems of nonlinear wave equations with damping and source terms[J]. Discrete Contin Dyn Syst,2009,2(S3):585-608.
[3]
Huang W Y, Zhang J. Global solutions and finite time blow up for wave equations with both strong and nonlinear damping terms[J]. Math Appl,2008,21(4):787-793. [4] Gazzola F, Squassina M. Global solutions and finite time blow up for damped semilinear wave equations[J]. Ann Inst H Poincaré:Nonlinear Anal,2006,23:185-207.
[4]
Teman R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics[M]. New York:Springer-Verlag,1997.
[5]
Georgiev V, Todorova G. Existence of a solution of the wave equation with nonlinear damping and source terms[J]. J Diff Eqns,1994,109:295-308.
[6]
Tcheugoue Tebou L R, Zuazua E. Uniform boundary stabilization of the finite difference space discretization of the 1-d wave eqution[J]. Adv Comput Math,2007,26(1/2/3):337-365.
[7]
Avila E. Qualitative analysis of a nonlinear wave equation[J]. Discrete Contin Dyn Syst,2004,10:787-804.
[8]
Galaktionov V A, Pohozaev S I. Blow-up and critical exponents for nonlinear hyperbolic equations[J]. Nonlinear Anal,2003,53:453-466.
[9]
Rabinowitz P H. Minimax Methods in Critical Point Theory with Applications to Differential Equations[M]. Providence:Am Math Soc,1984.
Munch A, Pazoto A F. Uniform stabilization of a viscous numerical approximation for a locally damped wave eqution[J]. ESAIM Control Optim:Calc Var,2007,13(2):265-293.
[13]
Ramdani K, Takahashi T, Tucsnak M. Uniformly exponentially stable approximations for a class of second order evolution equations-application to LQR problem[J]. ESAIM Control Optim:Calc Var,2007,13(3):503-527.
[14]
Uesaka H. Oscillation or nonosillation property for semilinear wave equations[J]. J Comput Appl Math,2004,164/165:723-730.