全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类具有势函数的多孔介质方程的爆破估计

, PP. 549-553

Keywords: 多孔介质方程,,爆破,爆破速率,爆破时间

Full-Text   Cite this paper   Add to My Lib

Abstract:

多孔介质方程具有广泛的物理背景,可用于刻画流体流动、热传导等在内的物理过程.首先利用凸方法证明了初值充分大时存在有限时刻爆破的解;再利用极大值原理结合积分估计等得出爆破解的爆破速率估计;最后利用L2方法得出爆破解的爆破时间估计,所得结果与初值和势函数V(x)都有关系.在所研究的方程中将势函数取作V(x)≡1,便得到了最典型的具有源项的多孔介质方程.

References

[1]  Biler P, Karch G, Monneau R. Nonlinear diffusion of dislocation density and self-similar solutions[J]. Commun Math Phys,2010,294:145-168.
[2]  Caffarelli L, Vazquez J. Asymptotic behaviour of a porous medium equation with fractional diffusion[J]. Discrete Contin Dyn Syst,2011,29:1393-1404.
[3]  Wang Y L, Mu C L, Xiang Z Y. Blowup of solutions to a porous medium equation with nonlocal boundary condition[J]. Appl Math Comput,2007,192:579-585.
[4]  Liang Z L. Blow up rate for a porous medium equation with power nonlinearity[J]. Nonlinear Anal:TMA,2010,73(11):3507-3512.
[5]  Kaplan S. On the growth of solutions of quasi-linear parabolic equations[J]. Commun Pure Appl Math,1963,16:305-330.
[6]  Friedman A, McLeod B. Blow-up of positive solutions of semilinear heat equations[J]. Indiana Univ MathJ,1985,34:425-447.
[7]  Tersenov A. space dimension can prevent the blowup of solution for parabolic problems[J]. Electronic J Diff Eqns,2007,165:1-6.
[8]  王玉兰,穆春来. 一类具有非局部源的拟线性抛物方程组的一致爆破模式[J]. 四川大学学报:自然科学版,2008,45(5):1007-1013.
[9]  Liang Z L, Zhao J N. Localization for the Evolu-tion p-Laplacian equation with trongly nonlinear source term[J]. J Diff Eqns,2009,246:391-407.
[10]  栗付才. 拟线性退化抛物型方程组解的整体存在性和爆破[J]. 数学物理学报,2008,28(6):1187-1193.
[11]  Vazquez J L. The Porous Medium Equation[M]. Oxford:Oxford Math Monogr Univ Press,2007.
[12]  Yuan B Q, Yuan J. Global well-posedness of incompressible flow in porous media with critical diffusion in Besov space[J]. J Diff Eqns,2009,246:4405-4422.
[13]  米永生,穆春来. 一类具有耦合非线性边界流的多孔介质方程组解的整体存在性与爆破[J]. 四川师范大学学报:自然科学版,2011,34(4):458-465.
[14]  Mi Y S, Mu C L, Chen B T. A nonlinear diffusion system coupled via nonlinear boundary flux[J]. J Math Anal Appl,2011,376:613-625.
[15]  Qu C Y, Ji R H, Zheng S N. A quasilinear parabolic system with nonlocal sources and weighted nonlocal boundary conditions[J]. J Math Research Expo,2011,31(5):761-769.
[16]  Cortazar C, Elgueta M, Rossi J D. The blow-up problem for a semilinear parabolic equation with potential[J]. J Math Anal Appl,2007,335:418-427.
[17]  Cheng T, Zheng G F. Some blow-up problems for a semilinear parabolic equation with potential[J]. J Diff Eqns,2008,244:766-802.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133