OALib Journal期刊
ISSN: 2333-9721
费用:99美元
一维等温量子Navier-Stokes方程组的热平衡状态
, PP. 599-602
Keywords: 量子Navier-Stokes方程组 ,热平衡 ,存在性 ,唯一性
Abstract:
研究发生在半导体器件中的一种耗散的量子流体动力学模型,即一维等温量子Navier-Stokes方程组.在热平衡状态下,先利用指数变换法将问题转化成一个四阶椭圆方程,然后利用Leray-Schauder不动点定理得到了模型古典解的存在性,最后在某些条件下证明了解的唯一性.
References
[1] Gardner C L. The quantum hydrodynamic model for semiconductor devices[J]. SIAM J Appl Math,1994,54:409-427.
[2] Jungel A. SIAM J Math Anal,2010,42:1025-1045.
[3] Brull S, Mehats F. Z Angew Math Mech,2010,90:219-530.
[4] Jungel A, Milisic J P. Kinetic and Related Models,2011,4(3):785-807.
[5] Jungel A, Lopez J L,Gamez J M. J Statistical Physics,2011,145:1661-1673.
[6] Jiang F. A remark on weak solutions to the barotropic compressible quantum Navier-Stokes equations[J]. Nonlinear Anal:RWA,2011,12:1733-1735.
[7] Jungel A. Effective velocity in compressible Navier-Stokes equations with third-order derivatives[J]. Nonlinear Anal,2011,74:2813-2818.
[8] Dong J W. Classical solutions to one-dimensional stationary quantum Navier-Stokes equations[J]. J Math Pures Appl,2011,96:521-526.
[9] 罗宏,蒲志林,周亚非. Navier-Stokes方程的渐近吸引子[J]. 广西师范大学学报:自然科学版,2009,27(2):38-41.
[10] 杨永琴,肖留超. Stokes问题的一个非协调有限元逼近[J]. 广西师范大学学报:自然科学版,2008,26(2):49-52.
[11] 罗玉文. 广义磁流体力学方程组的部分正则性[J]. 重庆师范大学学报:自然科学版,2010,27(4):41-44.
[12] 王小虎,李树勇. 线性阻尼的时滞2D-Navier-Stokes方程的全局吸引子[J]. 四川师范大学学报:自然科学版,2007,30(3):258-261.
[13] 韩天勇,李树勇. 四川师范大学学报:自然科学版,2007,30(2):198-203.
[14] Li H L, Li J, Xin Z. Vanishing of vacuum states and blow-up phenomena of the compressible Navier-Stokes equations[J]. Commun Math Phys,2008,281:401-444.
[15] Sun Y, Zheng X. Global weak solution to compressible Navier-Stokes equations with density-dependent viscosity, vacuum and gravitational force[J]. Ann Diff Eqns,2008,24:34-45.
Full-Text
Contact Us
service@oalib.com
QQ:3279437679
WhatsApp +8615387084133