Shao C, Chen W Y. Existence of non-constant positive steady-states to a predator-prey model with diffusion[J]. 应用数学,2009,22(4):902-907.
[3]
Gui C F, Lou Y. Uniqueness and nonuniqueness of coexistence states in the Lotka-Volterra competition model[J]. Commun Pure Appl Math,1994,47(12):1571-1594.
[4]
Du Y H, Lou Y. Some unqiueness and exact multiplicity results for a predator-prey model[J]. Trans Am Math Soc,1997,349(6):2443-2475.
[5]
Du Y H, Lou Y. S-shaped global bifurcation curve and Hopf bifurcation of positive solutions to a predator-prey model[J]. J Diff Eqns,1998,144:390-440.
[6]
Chen X F, Qi Y W, Wang M X. A strongly coupled predator-prey model with non-monotonic functional response[J]. Nonlinear Anal,2007,67:1966-1979.
[7]
Delgado M, Lpez-Gmez J, Suarez A. On the symbiotic Lotka-Volterra model with diffusion and transport effects[J]. J Diff Eqns,2000,160:321-349.
[8]
Brown K J, Davidson F A. Global bifurcation in the Brusselator system[J]. Nonlinear Anal,1995,12:1713-1725.
[9]
Ruan W H, Feng W. On the fixed point index and multiple steady states of reaction-diffusion systems[J]. Diff Integ Eqns,1995,8:371-391.
[10]
Wang M X, Wu Q. Positive solutions of a prey-predator model with predator saturation and competition[J]. J Math Anal Appl,2008,345:708-718.
[11]
Dancer E N. On the indices of fixed points of mappings in conesand applications[J]. J Math Anal Appl,1983,91:131-151.
[12]
Li L. Coexistence theorems of steady states for predator-prey interacting systems[J]. Trans Am Math Soc,1988,305:143-166.
[13]
Crandall M G, Rabinowitz P H. Bifurcation from simple eigenvalues[J]. J Funct Anal,1971,8(2):321-340.
Ko W, Ryu K. Coexistence states of a predator-prey system with non-monotonic functional response[J]. Nonlinear Anal,2007,8:769-786.
[17]
Chen B, Wang M X. Positive steady states to a diffusive prey-predator model Beddington-DeAngelis functional response[J]. Chin Ann Math,2007,28:495-506.
[18]
Ko W, Ryu K. On a predator-prey system with cross diffusion representing the tendency of predators in the presence of prey species[J]. J Math Anal Appl,2008,341:1133-1142.
[19]
Hei L J, Yu Y. Non-constant positive steadystates of one resource and two consumers model with diffusion[J]. J Math Anal Appl,2008,339:566-581.
[20]
Ling Z, Pedersen M. Coexistence of two species in a strongly coupled cooperative model[J]. Math Comput Model,2007,45:371-377.
[21]
Guo Z K, Li W L, Cheng L H. Eco-epidemiological model with epidemic and response function in the predator[J]. J Lanzhou Univ:Natural Sci,2009,45(3):117-121.
[22]
Ko W, Ryu K. Analysis of diffusive two-competing-prey and one-predator systems with Beddington-Deangelis functional response[J]. Nonlinear Anal,2009,71(9):4185-4202.
[23]
Du Y H, Pang P Y H, Wang M X. Qualitative analysis of a prey-predator model with stage structure for the predator[J]. SIAM J Math Anal,2008,69(2):596-620.
[24]
Li H L, Wang M X. Existence and uniqueness of positive solutions to the boundary blow-up problem for an elliptic system[J]. J Part Diff Eqns,2007,234:246-266.