Wang Q L. ε- strongly efficient solutions for vector optimization with set-valued maps[J]. Chin Quart J Math,2010,25(1):104-109.
[2]
Li T Y, Xu Y H. The strictly efficient subgradient and the optimality conditions of set-valued optimization[J]. Bull Aus Math Soc,2007,75(3):361-371.
[3]
Li S J, Teo K L, Yang X Q. Higher-order optimality conditions for set-valued optimization[J]. J Opt Theor Appl,2008,137(3):533-553.
[4]
Li T Y, Xu Y H, Zhu C X. ε- strictly efficient solutions of vector optimization problems with set-valued maps[J]. Asia-Pacific J Oper Res,2007,24(6):841-854.
[5]
Wang Q L, Li S J, Teo K L. Higher-order optimality conditions for weakly efficient solutions in nonconvex set-valued optimization[J]. Optim Lett,2010,4(3):425-437.
[6]
Rockafeller R T. Extension of subgradient calculas with application to optimization[J]. Nonlinear Anal:TMA,1985,9(7):665-698.
[7]
Clarke F H. Optimization and Nonsmooth Analysis[M]. New York:Wiley-Interscience,1983.
[8]
Papagergiou N S. Nonsmooth analysis on partially ordered vector space: Partl-non convex case[J]. Pacific J Math,1983,107(2):403-458.
Rong W D, Ma Y. ε-properly efficient solutions of vector optimization problems with set-valued maps[J]. OR Transactions,2000,4(4):21-32.
[12]
Rong W D, Gao C X. Connectedness of ε-super efficient solution set of vector optimization problems with set-valued maps[J]. OR Transactions,2005,9(1):43-48.
[13]
Gong X H. Optimality conditions for Henig and globally proper efficient sotions with ordering cone has empty interior[J]. J Math Anal Appl,2005(307):12-31.
[14]
Yu G L, Liu S Y. Generalized gradients of set-valued maps and globally proper efficient solutions[J]. Math Appl,2007,20(1):76-83.
[15]
Taa A. Subdifferentials of multifunctions and lagrange multipliers for multiobjective optimization[J]. J Math Anal Appl,2003,283:398-415.
[16]
Hu Y D, Meng Z Q. The cone-subdifferential stability of multiobjective programming with perturbed order[J]. J Sys Sci Math Sci,2000,20(4):439-446.