全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

集值优化问题的广义梯度与ε-全局真有效解的最优性条件

, PP. 44-47

Keywords: 切导数,ε-全局真有效性,广义梯度,最优性条件

Full-Text   Cite this paper   Add to My Lib

Abstract:

由于集值优化理论的近似有效解与Ekeland变分原理之间存在紧密的联系,因此,在实赋范线性空间中利用集值映射的上图导数引进了ε-全局真有效意义下的广义梯度的概念,在连通性条件下通过凸集分离定理证明了该广义梯度的存在性,并给出了用广义梯度刻画集值优化问题ε-全局真有效解的充分和必要条件.

References

[1]  Wang Q L. ε- strongly efficient solutions for vector optimization with set-valued maps[J]. Chin Quart J Math,2010,25(1):104-109.
[2]  Li T Y, Xu Y H. The strictly efficient subgradient and the optimality conditions of set-valued optimization[J]. Bull Aus Math Soc,2007,75(3):361-371.
[3]  Li S J, Teo K L, Yang X Q. Higher-order optimality conditions for set-valued optimization[J]. J Opt Theor Appl,2008,137(3):533-553.
[4]  Li T Y, Xu Y H, Zhu C X. ε- strictly efficient solutions of vector optimization problems with set-valued maps[J]. Asia-Pacific J Oper Res,2007,24(6):841-854.
[5]  Wang Q L, Li S J, Teo K L. Higher-order optimality conditions for weakly efficient solutions in nonconvex set-valued optimization[J]. Optim Lett,2010,4(3):425-437.
[6]  Rockafeller R T. Extension of subgradient calculas with application to optimization[J]. Nonlinear Anal:TMA,1985,9(7):665-698.
[7]  Clarke F H. Optimization and Nonsmooth Analysis[M]. New York:Wiley-Interscience,1983.
[8]  Papagergiou N S. Nonsmooth analysis on partially ordered vector space: Partl-non convex case[J]. Pacific J Math,1983,107(2):403-458.
[9]  盛宝怀,刘三阳. 用广义梯度刻画集值优化Benson真有效解[J]. 应用数学学报,2002,25(1):22-28.
[10]  侯震梅,周勇. 集值映射的广义梯度与超有效解[J]. 吉林大学学报:理学版,2006,44(1):9-14.
[11]  Rong W D, Ma Y. ε-properly efficient solutions of vector optimization problems with set-valued maps[J]. OR Transactions,2000,4(4):21-32.
[12]  Rong W D, Gao C X. Connectedness of ε-super efficient solution set of vector optimization problems with set-valued maps[J]. OR Transactions,2005,9(1):43-48.
[13]  Gong X H. Optimality conditions for Henig and globally proper efficient sotions with ordering cone has empty interior[J]. J Math Anal Appl,2005(307):12-31.
[14]  Yu G L, Liu S Y. Generalized gradients of set-valued maps and globally proper efficient solutions[J]. Math Appl,2007,20(1):76-83.
[15]  Taa A. Subdifferentials of multifunctions and lagrange multipliers for multiobjective optimization[J]. J Math Anal Appl,2003,283:398-415.
[16]  Hu Y D, Meng Z Q. The cone-subdifferential stability of multiobjective programming with perturbed order[J]. J Sys Sci Math Sci,2000,20(4):439-446.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133