OALib Journal期刊
ISSN: 2333-9721
费用:99美元
|
|
|
几乎v-整环的局部化与拉回图研究
, PP. 23-27
Keywords: 星型算子,几乎v-整环,局部化,Nagata型定理,拉回图
Abstract:
引入了几乎v-整环的概念.举例说明了几乎v-整环的局部化不一定是几乎v-整环.证明了若{Rα}是整环R的平坦扩环且R=∩Rα具有局部有限特征,如果Rα都是几乎v-整环,则R也是几乎v-整环.也研究了关于几乎v-整环的Nagata型定理.最后研究了几乎v-整环在(ΔM)型拉回图中的性质,证明了在(ΔM)型拉回图中,整环R是几乎v-整环当且仅当整环D和T都是几乎v-整环且TM是AV-整环.特别地,给出了若k是整环D的商域,则D+Xk[X](或D+Xk[[X]])是几乎v-整环当且仅当D是几乎v-整环.
References
[1] | Gilmer R. Multiplicative Ideal Theory[M]. New York:Marcel Dekker,1972.
|
[2] | 王芳贵. 交换环与星型算子理论[M]. 北京:科学出版社,2006.
|
[3] | 王芳贵. 星型算子理论的发展及其应用[J]. 四川师范大学学报:自然科学版,2009,32(2):249-259.
|
[4] | 陈幼华,王芳贵,尹华玉. 关于PVMD的一些刻画[J]. 四川师范大学学报:自然科学版,2008,31(1):18-21.
|
[5] | 李庆,王芳贵. UMT整环上的w-维数[J]. 四川师范大学学报:自然科学版,2010,33(1):24-26.
|
[6] | Zafrullah M. A general theory of almost factoriality[J]. Manuscript Math,1985,51:29-62.
|
[7] | Anderson D D, Zafrullah M. Almost Bézout domains[J]. J Algebra,1991,142:285-309.
|
[8] | LI Q. On almost Prüfer v-multiplication domains[J]. Algebra Colloq,2012,19(3):493-500.
|
[9] | Anderson D D, Anderson D F, Zafrullah M. Rings between D[X] and K[X][J]. Houston J Math,1991,17(1):109-129.
|
[10] | Gabelli S, Houston E. Coherentlike conditions in pullbacks[J]. Michigan Math J,1997,44:99-112.
|
[11] | Houston E, Taylor J. Arithmetic properties in pullbacks[J]. J Algebra,2007,310:235-260.
|
[12] | Anderson D D. Star operations induced by overrings[J]. Commun Algebra,1988,16(12):2535-2553.
|
[13] | Nagata M. A remark on the unique factorization theorem[J]. J Math Soc Jpn,1957,9:143-145.
|
[14] | Gilmer R, Parker T. Divisibility properties in semigroup rings[J]. Michigan Math J,1974,21:64-86.
|
[15] | Anderson D D, Anderson D F, Zafrullah M. Factorization in integral domains[J]. J Algebra,1992,152(1):78-93.
|
[16] | Chang G W, Dumitrescu T, Zafrullah M. t-splitting sets in integral domains[J]. J Pure Appl Algebra,2004,187:71-86.
|
[17] | Anderson D D, Dumitrescu T, Zafrullah M. Almost splitting sets and AGCD-domains[J]. Commun Algebra,2004,32:147-158.
|
Full-Text
|
|
Contact Us
service@oalib.com QQ:3279437679 
WhatsApp +8615387084133
|
|