全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

时空Chebyshev伪谱方法求解Burgers方程

Keywords: Chebyshev伪谱方法,Burgers方程,高精度

Full-Text   Cite this paper   Add to My Lib

Abstract:

Burgers方程在数学和物理学的各个领域都有重要的应用,寻求Burgers方程的精确解一直是一个重要的研究课题.提出了使用时空Chebyshev伪谱法求解一维Burgers方程的方法.首先使用Chebyshev伪谱方法对空间导数进行离散,得到一个常微分方程组,然后使用Chebyshev伪谱方法对此常微分方程组进行求解,最后通过数值试验对数值解和精确解进行了比较.数值试验表明该方法使用简便,稳定性好,有较高的精度.

References

[1]  彭亚绵,闵涛,张世梅,等. Burgers方程的MOL数值解法[J]. 西安理工大学学报,2004,20(3):178-183.
[2]  杨水平,李寿佛,莫宏敏. 2类高阶格式数值测试盒比较[J]. 吉首大学学报:自然科学版,2007,28(4):30-32.
[3]  田钧方. 交通流复杂特性的微观建模与模拟[D]. 北京:北京交通大学,2010:62-64.
[4]  Shen J, Tang T. Spectral and High-order Methods with Applications[M]. Beijing:Science Press,2006:302-320.
[5]  Guo B Y. Spectral Methods and Their Applications[M]. Hong Kong:World Scientific,1998:278-297.
[6]  Canuto C, Hussaini M Y, Quarteroni A, et al. Spectral Methods in Fluid Dynamics[M]. Berlin:Springer-Verlag,1987:243-272.
[7]  Berrut J P, Trefethen L N. Barycentric Lagrange interpolation[J]. SIAM Rev,2004,46:501-517.
[8]  Baltensperger R, Trummer R M. Spectral differencing with a twist[J]. SIAM J Sci Comput,2003,24:1465-1487.
[9]  Higham N J. The numerical stability of Barycentric Lagrange interpolation[J]. IMA J Num Anal,2004,24:547-556.
[10]  Javidi M, Golbabai A. Spectral collocation method for parabolic partial differential equations with Neumann boundary conditions[J]. Appl Math Sci,2007(1):211-218.
[11]  Wang Z Q, Guo B Y. Legendre-Gauss-Radau collocation method for solving initial value problems of first order ordinary differential equations[J]. J Sci Comput,2012,52:226-255.
[12]  Guo B Y, Wang Z Q. Legendre-Gauss collocation methods for ordinary differential equations[J]. Adv Comput Math,2009,30:249-280.
[13]  Guo B Y, Yan J P. Legendre-Gauss collocation methods for initial value problems of second order ordinary differential equations[J]. Appl Num Math,2009,59:1386-1408.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133