全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Vakhnenko-Parkes方程的李对称及其精确解

Keywords: Vakhnenko-Parkes方程,李对称,伴随表示,最优系统,分岔,精确解

Full-Text   Cite this paper   Add to My Lib

Abstract:

运用李对称分析方法和广义对称方法,获得了Vakhnenko-Parkes方程的对称群.证明此方程的李代数的一维最优子代数有4个元素,在伴随表示作用下,证明了该最优系统的最优性.此外,运用动力系统理论,获得了该系统的分岔与精确解.

References

[1]  orrison,arkes,akhnenko.he-loopolitonolutionsfheakhnenkoquation[J].onlinearity,1999,12(5):1427-1437.
[2]  orrison,arkes.he-solitonolutionfeneralisedakhnenkoquation[J].lasgowathrust,2001,43:65-90.
[3]  orrison,arkes.he-solitonolutionfheodifiedeneralisedakhnenkoquation(aewonlinearvolutionquation)[J].haos,Solitonsndractals,2003,16(1):13-26.
[4]  akhnenko,arkes,ichtchenko.heakhnenkoquationromheiewointfhenversecatteringethodorhedVquation[J].ntiffqnsppl,2006,1(4):429-449.
[5]  akhnenko,arkes,orrison.acklundransformationndhenversecatteringransformethodorheeneralisedakhnenkoquation[J].haos,Solitonsndractals,2003,17(4):683-692.
[6]  akhnenko,arkes.hewooopolitonolutionfheakhnenkoquation[J].onlinearity,1998,11(6):1457-1464.
[7]  luman,umei.ymmetriesndifferentialquations[M].ework:Springer-Verlag,1989.
[8]  iu,i.ieymmetrynalysisndxactolutionsorhehortulsequation[J].onlinearnal,2009,71(5/6):2126-2133.
[9]  hen,a.ifurcationethodfynamicalystemsoreneralizedadomtsov-Petviashvili-enjamin-Bona-Mahonyquation[J].ramanahys,2008,71(1):57-63.
[10]  e.heomotopyerturbationethodoronlinearscillatorsithiscontinuities[J].pplathomput,2004,151(1):287-292.
[11]  akhnenko.olitonsnonliearodeledium[J].hys,1992,A25(15):4181-4187.
[12]  akhnenko.igh-frequencyoliton-likeavesnelaxingedium[J].athhys,1999,40(4):2011-2020.
[13]  ahhas.nalyticpproximationsorhene-loopolitonolutionfheakhnenkoqaution[J].haos,Solitonsndractals,2009,40(5):2257-2264.
[14]  u,ang,iao.olvinghene-loopolitonolutionfheakhnenkoquationyeansfheomotopynalysisethod[J].haos,Solitonsndractals,2005,23(5):1733-1740.
[15]  akhnenko,arkes.healculationfulti-solitonolutionsfheakhnenkoquationyhenversecatteringethod[J].haos,Solitonsndractals,2002,13(9):1819-1826.
[16]  bazari.pplicationfG′/G-expansionethodoravelingaveolutionsfhreeonlinearvolutionquation[J].omputersndluids,2010,39(10):1957-1963.
[17]  afari,adkhode,halique.ravelingaveolutionsfonlinearvolutionsingheimplestquationethod[J].omputathppl,2012,64(6):2084-2088.
[18]  iu,i,iu.ieymmetrynalysis,ptimalystemsndxactolutionsoheifth-orderdVypesfquation[J].athnalppl,2010,368(2):551-558.
[19]  若辰,何文丽,张顺利,等.线性发展方程的一维最优系统[J].北大学学报:自然科学版,2003,33(4):383-388.
[20]  颖,屈长征.ero-couponondricing模型的最优系统和对称约化[D].州:西北大学,2009.
[21]  hou,u.ptimalystemsndrouplassificationf1+2)-dimensionaleatquation[J].ctapplath,2004,83(3):257-287.
[22]  知恩,周义仓.微分方程定性理论与稳定性方法[M].京:科学出版社,2001.
[23]  iu,i.ieymmetrynalysisndxactolutionsorhextendedKdVquation[J].ctapplath,2010,109(3):1107-1119.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133