全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Shannon-Khinchin公理的Ulam稳定性

Keywords: 拟可加性,Shannon-Khinchin公理,Havrda-Charvat熵,Ulam稳定性

Full-Text   Cite this paper   Add to My Lib

Abstract:

熵作为衡量随机变量的统计期望值,是信息度量的重要方式.典型的香农熵给出了经典概率信息的完美度量标准,但无法完全刻画复杂信息.Havrda-Charvat熵作为香农熵的单参数扩展,在诸如计算机、信息论和统计物理等领域得到广泛研究.这种信息测度可由非扩展系统的多个公理来刻画.研究这些公理中的Shannon-Khinchin公理和一般化公理的Ulam稳定性.证明了某些公理条件的弱可扰动性.

References

[1]  hannon,eaver.heathematicalheoryfommunication[M].rbana:Univllinoisress,1963.
[2]  olshani,asha,ari.omeropertiesfenyintropyndenyintropyate[J].nfoci,2009,179(14):2426-2433.
[3]  arezadeh,sadi.esultsnesidualenyintropyfrdertatisticsndecordalues[J].nfoci,2010,180(21):4195-4206.
[4]  eixeira,atos,ntunes.onditionalenyintropies[J].EEEransnfoheory,2012,58(7):4273-4277.
[5]  olshania,ashab.enyintropyateoraussianrocesses[J].nfoci,2010,180(8):1486-1491.
[6]  izba,leinert,hefaat.enyi’snformationransferetweeninancialimeeries[J].hysica:Statisticalechanicsndtspplications,2012,391(10):2971-2989.
[7]  ovacevic,tanojevic,enk.omeropertiesfenyintropyverountablynfinitelphabets[J].roblemsfnformationransmission,2013,49(2):99-110.
[8]  esche.enyintropiesndbservables[J].hysev,2004,E70(1):7102-7105.
[9]  enyi.neasuresfntropyndnformation[C]//Proctherkeleyympathtatrob,1961,1:547-561.
[10]  lanco,asini,ung,tl.elativentropyndolography[J].ighnergyhys,2013,2013:60.
[11]  lebanov,ufu,achdev,tl.enyintropiesorreeieldheories[J].ighnergyhys,2012,2012:74.
[12]  enyi.ahrscheinlichkeitsrechnungitinemnhangbernformationsteorie[C]//VEB.erlin:Deutscherarlanerissenschaften,1962.
[13]  arezadeh,sadi.esultsnesidualenyintropyfrdertatisticsndecordalues[J].nfoci,2010,180(21):4195-4206.
[14]  avrda,harvat.uantificationethodsflassificationrocesses:onceptftructural-entropy[J].ybernetika(Prague),1967,3:30-35.
[15]  sallis.ossibleeneralizationfolzmann-Gibbstatistics[J].tathys,1988,52:479-487.
[16]  ajda.heoryftatisticalnferencendnformation[M].ortrecht:Kluwercademicublishers,1989.
[17]  be.xiomsndniquenessheoremorsallisntropy[J].hysett,2000,A271:74-79.
[18]  osantos.eneralizationfhannon’sheoremorsallisntropy[J].athhys,1997,38:4104-4107.
[19]  uyari.eneralizationfhannon-Khinchinxiomsoonextensiveystemsndheniquenessheoremorheonextensiventropy[J].EEEransnfoheory,2004,50:1783-1787.
[20]  addeev.nheotionfntropyfiniterobabilitypace[J].spekhiatauk,1956,11:227-231.
[21]  hinchin.heonceptfntropynrobabilityheory[J].spekhiatauk,1953,8:3-20.
[22]  veberg.ewerivationfhenformationunction[J].athcand,1958,6:297-298.
[23]  aniadakis,carfone.eschetabilityf-entropy[J].hys,2004,A340:102-109.
[24]  be.tabilityfsallisntropyndnstabilitiesfenyindormalizedsallisntropies:asisor-exponentialistributions[J].hysev,2002,E66:6134-6139.
[25]  sallis.ntropy[J].omputationalomplexity,2012,21(4):940-964.
[26]  be.tabilitynalysisfeneralizedntropiesnd-exponentialistributions[J].hysica,2004,D193:84-89.
[27]  lam.ollectionfathematicalroblems[M].ework:Interscienceubl,1960.
[28]  yers.nhetabilityfheinearunctionalquation[J].rocatcadci,1941,27:222-224.
[29]  强,郭艳平.般四次方程的稳定性[J].川师范大学学报:自然科学版,2013,5:703-707.
[30]  德金,向淑文,周永辉.限理性下拟变分不等式问题解的稳定性[J].川师范大学学报:自然科学版,2012,6:730-733.
[31]  assias.nhetabilityfheinearappingnanachpaces[J].rocmathoc,1978,72:297-300.
[32]  er.uperstabilitysotatural[J].ocznikaukydaktraceat,1993,159:109-123.
[33]  im.tabilityfheobacevskiquation[J].onlinearciencestspplications,2011,4(1):11-18.
[34]  er,emrl.hetabilityfhexponentialquation[J].rocmathoc,1996,124:779-787.
[35]  yers,sac,assias.tabilityfunctionalquationsneveralariables[M].oston:Birkhauser,1998.
[36]  aksa.hetabilityfhentropyfegreelpha[J].athnalppl,2008,346:17-21.
[37]  rzdek.yperstabilityfheauchyquationnestrictedomains[J].ctaathung,2013,141(1):58-67.
[38]  hinchin.athematicaloundationsfnformationheory[M].ework:Dover,1957.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133