全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

|x|α在第二类Chebyshev结点的有理插值

DOI: 10.3969/j.issn.1001-8395.2015.06.019, PP. 889-892

Keywords: Lagrange插值,第二类Chebyshev结点,有理插值,Newman-α型有理算子,逼近阶

Full-Text   Cite this paper   Add to My Lib

Abstract:

由于|x|α的Lagrange插值多项式逼近|x|α的效果很差,非光滑函数|x|的有理逼近非常有效,所以考虑|x|α的有理逼近.首先构造Newman-α型有理算子,它在(-∞,+∞)与|x|α有共单调性.然后考虑Newman-α型有理算子逼近|x|α的收敛速度,结点组X取第二类Chebyshev结点.得到确切的逼近阶仅为O(1/n).这个结果虽不及|x|的有理逼近,但优于|x|α的Lagrange插值逼近.

References

[1]  Bernstein S. Quelques remarques surl interpolation[J]. Math Ann,1918,79:1-12.
[2]  Natanson I P. Constructive Function TheoryⅢ[M]. New York:Fredrick Ungar,1965:30-35.
[3]  Revers M. The divergence of Lagrange interpolation for |x|α at equidistant notes[J]. J Approx Theory,2000,103:269-280.
[4]  Revers M. On Lagrange interpolatory parabolas to |x|α at equally spaced nodes[J]. Archiv Der Math,2000,74:385-391.
[5]  Brutman L, Passow E. On the divergence of Lagrange interpolation to |x|[J]. J Approx Theory,1995,81:127-135.
[6]  卢志康,吴晓红. 插值多项式对函数|x|α的逼近[J]. 浙江大学学报:理学版,2006,33(6):610-612.
[7]  Zhu L Y, Huang Z Y. On Lagrange interpolation for |x|α(0<α<1)[J]. Analysis Theory Appl,2009,25(1):16-24.
[8]  吴晓红,卢志康. 拉格朗日插值多项式对函数|x|α的逼近[J]. 杭州师范大学学报:自然科学版,2012,11(4):302-304.
[9]  Xia M. On Lagrange interpolation to |x|α(1<α<2) with equally spaced nodes[J]. Analysis Theory Appl,2004,20(3):281-287.
[10]  Lu Z K, Ge X F. The exact convergence rate at zero of Lagrange interpolation polynomial to |x|α[J]. Analysis Theory Appl,2006,23(3):201-207.
[11]  何国龙,陈志祥,周颂平. 插值多项式对函数|x|α的逼近[J]. 浙江大学学报:理学版,2004,31(1):21-23.
[12]  Revers M. On Lagrange interpolation with equally spaced nodes[J]. Bull Austral Math Soc,2000,62:357-368.
[13]  Su H, Xu S S. The divergence of Lagrange interpolation for |x|α(2<α<4) at equidistant nodes[J]. Analysis Theory Appl,2006,22(2):146-154.
[14]  郭妞萍,黄志强. 在等距节点处对函数|x|α进行拉格朗日插值时的收敛性[J]. 西南民族大学学报:自然科学版,2006,32(6):1106-1110.
[15]  黄志强,郭妞萍. 在等距节点处对函数|x|α(3<α<4)进行拉格朗日插值的收敛阶[J]. 西南民族大学学报:自然科学版,2011,37(1):19-22.
[16]  Newman D J. Rational approximation to |x|[J]. Mich Math J,1964,11:11-14.
[17]  Brutman L, Passow E. On rational interpolation to |x|[J]. Constr Approx,1997,13:381-391.
[18]  张慧明,李建俊. |x|在第二类Chebyshev结点的有理逼近[J]. 郑州大学学报:理学版,2010,42(2):1-3.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133