全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

实正交矩阵的子矩阵的幂的迹的渐进分布

, PP. 49-52

Keywords: 随机矩阵,实正交群,,正态分布,特征标

Full-Text   Cite this paper   Add to My Lib

Abstract:

设随机矩阵U属于n阶实正交群O(n),O(n)的分布是单位Haar分布,[Um表示U的m阶顺序主子矩阵,记Q=nm[Um.文献(DiaconisP,ShahshahaniM.JApplProbab,1994,A3149-62.)通过计算TrUj的联合矩得出对固定的整数k,当n充分大时(TrU,TrU2,…,TrUk)渐进于正态分布.利用Jack函数和对称群的特征标的恒等式,推广这一结论到U的子矩阵情形,即证明了随机向量(TrQ,TrQ2,…,TrQk)当m→+∞时依分布收敛于正态分布.

References

[1]  Hughes C P, Radnick Z. Mock Gaussian behaviour for linear statistics of classical compact groups[J]. J Phys,2003,A36:2919-2932.
[2]  Pastur L, Vasilchuk V. On the moments of traces of matrices of classical Groups[J]. Commun Math Phys,2004,252:149-166.
[3]  Stolz M. On the Diaconis-Shahshahani method in random matrix theory[J]. J Algebraic Combinatories,2005,22(4):471-191.
[4]  Dehaye P O. Averages over classical compact Lie groups, twisted by characters[J]. J Combinatorial Theory,2007,A114(7):1278-1292.
[5]  Feng Z M, Song J P. Integrals over the circular ensembles relating to classical domains[J]. J Phys,2009,A42:325204.
[6]  Bai Z D, Silverstein J W. Spectral Analysis of Large Dimensional Random Matrices[M]. Beijing:Science Press,2006.
[7]  Diaconis P, Evans S N. Linear functionals of eigenvalues of random matrices[J]. Trans Am Math Soc,2001,353:2615-2633.
[8]  Diaconis P, Shahshahani M. On the eigenvalues of random matrices[J]. J Appl Probab,1994,A31:49-62.
[9]  Diaconis P. Patterns in eigenvalues: The 70th Josiah Willard Gibbs lecture[J]. Bull Am Math Soc,2003,40(2):155-178.
[10]  冯志明. 典型群的迹的矩[J]. 乐山师范学院学报,2008,23(5):12-13.
[11]  Collins B, Stolz M. Borel theorems for random matrices from the classical compact symmetric spaces[J]. Ann Probab,2008,36(3):876-895.
[12]  Novak J. Truncations of random unitary matrices and Young tableaux[J]. Electronic J Combinatorics,2007,14:1-21.
[13]  Jiang T F. How many entries of a typical orthogonal matrix can be approximated by independent normals[J]. Ann Probab,2006,34(4):1497-1529.
[14]  Jiang T F. The entries of Haar-invariant matrices from the classical compact groups[J]. J Theo Probab,2010,23(4):1227-1243.
[15]  Forrester P J. Quantum conductance problems and the Jacobi ensemble[J]. J Phys,2006,A39:6861-6870.
[16]  Macdonald I G. Symmetric functions and Hall polynomials[M]. 2nd Ed. New York:Oxford University Press,1995.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133