全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高压下XeF2结构和电子性质的第一性原理研究

, PP. 907-910

Keywords: 二氟化氙,态密度,高压

Full-Text   Cite this paper   Add to My Lib

Abstract:

二氟化氙(XeF2)晶体是一种重要的化学刻蚀材料和激光器件材料.利用密度泛函理论(DFT),分别采用广义梯度近似(GGA)和局域密度近似(LDA)对XeF2晶体在0~120GPa范围内的结构进行相关分子动力学模拟,得到了压强-体积(p-V)关系.结果表明,低压下用2种方法得到的XeF2晶体数据与实验比较吻合.同时,分析了高压下原子态密度的变化,得到了XeF2晶体带隙与压强的变化关系,表明XeF2晶体在高压下是一种半导体材料.研究其在高压下的变化特征,对实验研究具有一定参考价值.

References

[1]  [1] 尉伟,吴晓伟,吕凡,等. XeF2对SiO2/Si的干法刻蚀[J]. 中国科技大学报:自然科学版,2009,39(6):603-607.
[2]  尉伟,王勇,吴晓伟,等. 一种XeF2对硅的脉冲自发刻蚀[J]. 真空,2008,45(4):93-95.
[3]  赖富相,张永生. XeF激光器中XeF2气体的监测[J]. 激光技术,2001,25(6):469-472.
[4]  Kim M S, Debessai M, Yoo C S. Two- and three-dimensional extended solids and metallization of compressed XeF2[J]. Nature Chemistry,2010,2(9):784-788.
[5]  周春,周晓林. 高压下ZrB2的结构和热力学性质的第一性原理计算[J]. 四川师范大学学报:自然科学版,2009,31(2):206-209.
[6]  赵茂娟,郑勇林,唐颖. 高压下碳化钛热力学性质的第一性原理计算[J]. 四川师范大学学报:自然科学版,2011,33(6):861-863.
[7]  Ordejon P, Artacho E, Soler J M. Self-consistent order-N density-functional calculations for very large systems[J]. Phys Rev,1996,B53(16):10441-10445.
[8]  Sanchez-Portal D, Ordejon P, Artacho E, et al. Density-functional method for very large systems with LCAO basis sets[J]. Int J Quantum Chem,1997,65(5):453-461.
[9]  Soler J M, Artacho E, Gale J D, et al. The SIESTA method for ab initio order-2N materials[J]. J Phys:Condens Matter,2002,14(11):2745-2749.
[10]  [1 Levy H S, Agron P A. The crystal and molecular structure of Xenon Difluoride by neutron diffraction[J]. J Am Chem Soc,1963,85(2):241-242.
[11]  [1 Ceperley D M, Alder B J. Ground state of the electron gas by a stochastic method[J]. Phys Rev Lett,1980,45(7):566-569.
[12]  [1 Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys Rev Lett,1996,77(18):3865-3868.
[13]  [1 Troullier N, Martins J L. Efficient pseudopotentials for plane-wave calculations[J]. Phys Rev,1991,B43(3):1993-2006.
[14]  [1 Sankey O F, Niklewski D J. Ab initio multicenter tight-binding model for molecular-dynamics simulations and other applications in covalent systems[J]. Phys Rev,1989,B40(6):3979-3995.
[15]  [1 Junquera J, Paz O, Sanchez-Portal D, et al. Numerical atomic orbitals for linear-scaling calculations[J]. Phys Rev,2001,B64(23):5111-5119.
[16]  [1 Monkhorst H P. Special points for Brillouin-zone integrations[J]. Phys Rev,1976,B13(12):5188-5192.
[17]  [1 Staroverov V N, Scuseria G E, Tao J M, et al. Tests of a ladder of density functionals for bulk solids and surfaces[J]. Phys Rev,2004,B69(7):075102-075112.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133