全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

分数阶微分包含三点边值问题解的存在性

, PP. 881-886

Keywords: 解的存在性,分数阶微分包含,边值问题,不动点定理

Full-Text   Cite this paper   Add to My Lib

Abstract:

分数阶微分方程起源于物理学、人口动力学和经济学等研究领域,是人们理解现实世界数学模型的重要工具.近年来,分数阶微分方程的研究受到数学工作者的广泛关注.利用不动点定理,研究了分数阶微分包含三点边值问题cDα0+y(t)∈F(t,y(t)),t∈(0,1),α∈(2,3],y(0)=y″(0)=0,βy(η)=y(1),得到了带有三点边值条件的分数阶微分包含解存在的充分条件,所得结果包含非线性项是凸和非凸2种情形.

References

[1]  [1] Lakshmikantham V, Vatsala A S. Basic theory of fractional differential equations[J]. Nonlinear Anal,2008,69:2677-2682.
[2]  Kilbas A A, Srivastava H M, Trujillo J J. Theory and Applications of Fractional Differential Equations North-Hollan Mathematics Studies[M]. Amsterdam:Elsevier Science B.V.,2006.
[3]  Samko S G, Kilbas A A, Marichev O I. Fractional Integrals and Derivatives,Theory and Applications[M]. Yverdon:Gordon and Breach,1993.
[4]  Wang G T, Ntouyas S K, Zhang L H. Positive solutions of the three-point boundary value problem for fractional-order differential equations with an advanced argument[J]. Adv Diff Eqns,2011,2:1-11.
[5]  Belmekki M, Nieto J, Rodriguez-Lopez R. Existence of periodic solution of a nonlinear fractional differential equation[J]. Bound Value Probl,2009(2009):1-18.
[6]  陈文,孙洪广,李西成. 力学与工程问题的分数阶导数建模[M]. 北京:科学出版社,2010.
[7]  刘洪洁,赵俊芳,耿凤杰,等. 一类分数阶微分方程正解的存在性[J]. 数学的实践与认识,2012,42(2):241-248.
[8]  王永庆,刘立山. Banach空间中分数阶微分方程m点边值问题的正解[J]. 数学物理学报,2012,32(1):246-256.
[9]  Castaining C, Valadier M. Convex analysis and measurable multifunctions[C]//Lecture Notes in Mathematics. New York:Springer-Verlag,1977.
[10]  [1 Deimling K. Multivalued Differential Equations[M]. New York:Walter De Gruyter,1992.
[11]  [1 Hu S H, Papageorgiou N. Handbook of Multivalued Analysis,Theory I[M]. Dordrecht:The Netherlands,1991.
[12]  [1 Deimling K. Multivalued Differential Equations[M]. Berlin:De Gruyter,1992.
[13]  [1 Granas A, Dugundji J. Fixed Point Theory[M]. New York:Springer-Verlag,2005.
[14]  [1 Lasota A, Opial Z. An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations[J]. Bull Acad Polon Sci Ser Sci Math Astronom Phys,1965,13:781-786.
[15]  [1 Bressan A, Colombo G. Extensions and selections of maps with decomposable values[J]. Studia Math,1988,90:69-86.
[16]  [1 Covitz H, Nadler Jr S B. Multivalued contraction mappings in generalized metric spaces[J]. Israel J Math,1970,8:5-11.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133