[1] Bai Z. Error analysis of the Lanczos algorithm for the nonsymmetric eigenvalue problem\[J\]. Math Comput,1994,62:209-226.
[2]
Day D. An efficient implementation of the nonsymmetric Lanczos algorithm\[J\]. SIAM J Matrix Anal Appl,1997,18:566-589.
[3]
Cullum J K, Willoujhby R A. A Practical Procedure for Computing Eigenvalues of Large Sparse Nonsymmetric Matrices in Large Scale Eigenvalue Problems\[M\]. Amsterdam:North-Holland,1986.
[4]
Jia Z. Refined iterative algorithms based on Arnoldi’s process for large unsymmetric eigenproblems\[J\]. Linear Algebra Appl,1997,259:1-23.
[5]
Lanczos C. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators\[J\]. J Res Nat Bur Stand,1950,45:225-280.
[6]
Lanczos C. Solution of systems of linear equations by minimized iterations\[J\]. J Res Nat Bur Stand,1952,49:33-53.
[7]
Gene G H , Van Loan C F. Matrix Computations\[M\]. 3rd. Baltimore:Johns Hopkins University Press,1996.
[8]
Tremblay J C, Tucker C T. A refined unsymmetric Lanczos eigensolver for computing accurate eigentriplets of a real unsymmetric matrix\[J\]. Elect Trans Num Anal,2007,28:95-113.