全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

多标签分类中标签检测技术的实验比较

, PP. 55-61

Keywords: 多标签分类,k近邻法,线性回归阈值函数,多输出线性回归,Logistic回归,离散Bayes规则

Full-Text   Cite this paper   Add to My Lib

Abstract:

当前的部分多标签分类算法本质上由两项分类技术级联而成,前一级建立标签排序系统,后一级检测相关标签,兼顾进一步改善分类性能.本文针对不同标签检测技术开展研究,收集并实现4种通用标签检测技术线性回归阈值法、多输出线性回归法、Logistic回归法以及离散Bayes规则,以k近邻算法作为基线算法,在10个基准数据集上进行实验比较.实验结果表明,从计算时间与分类性能两个方面来说,多输出线性回归法是值得推荐的方法.

References

[1]  Tsoumakas G,Katakis I. Multi-label classification: an overview[J]. International Journal of Data Warehousing and Mining, 2007,3 ( 3) : 1-13.
[2]  Tsoumakas G,Katakis I,Vlahavas I. Mining multi-label data[C]/ /Maimon O,Rokach L. Data Mining and Knowledge Discovery Handbook. 3rd ed. New York: Springer, 2010: 667-685.
[3]  Xu J. An extended one-versus-rest support vector machine for multi-label classification[J]. Neurocomputing,2011,74 ( 17) : 3 114-3 124.
[4]  Madjarov G,Kocev D,Gjorgjevik D, et al. An extensive experimental comparison of methods for multi-label learning[J]. Pattern Recognition, 2012, 45( 9) : 3 084-3 104.
[5]  Elisseeff A,Weston J. A kernel method for multi-labelled classification[C]/ /Proceedings of the 14th Conference on Neural Information Processing Systems. Canada: Vancouver, 2001: 681-687.
[6]  Zhang M L,Zhou Z H. Multilabel neural networks with application to function genomics and text categorization[J]. IEEE Transactions on Knowledge and Data Engineering, 2006, 18( 10) : 1 338-1 351.
[7]  Spyromitros E,Tsoumakas G,Vlahavas I. An empirical study of lazy multilabel classification algorithms[C]/ /Proceedings of the 5th Hellenic Conference on Artificial Intelligence. Greece: Syros, 2008,LNAI 5138: 401-406.
[8]  Zhang M L,Zhou Z H. ML-kNN: a lazy learning approach to multi-label learning[J]. Pattern Recognition,2007,40 ( 7) : 2 038-2 048.
[9]  Madjarov G,Gjorgjevik D,Dzersoki S. Two stage architecture for multi-label learning[J]. Pattern Recognition,2012,45 ( 3) : 1 019-1 034.
[10]  Petrovskiy M,Glazkova V. Linear methods for reduction from ranking to multilabel classification[C]/ /Proceedings of the 19th Australia Joint Conference on Artificial Intelligence. Australia: Hobart, 2006,LNCS 4304: 1 152-1 156.
[11]  Hastie T,Tibshirani R,Friedman J. The Elements of Statistical Learning[M]. New York: Springer, 2001.
[12]  Duda R O,Hart P E,Stork D G. Pattern Classification[M]. 2nd ed. New York: John Wiley and Sons, 2001.
[13]  张学工. 模式识别[M]. 3 版. 北京: 清华大学出版社, 2010. Zhang Xuegong. Pattern Recognition[M]. 3rd ed. Beijing: Tsinghua University Press, 2010. ( in Chinese)
[14]  Cheng W W,Hullermeier E. Combining instance-based learning and logistic regression for multilabel classification[J]. Machine Learning, 2009, 76( 2 /3) : 211-225.
[15]  Vach W,Robner P,Schumacher M. Neural networks and logistic regression: part Ⅰ[J]. Computational Statistics and Data Analysis, 1996, 21( 6) : 661-682.
[16]  Vach W,Robner P,Schumacher M. Neural networks and logistic regression: part Ⅱ[J]. Computational Statistics and Data Analysis, 1996, 21( 6) : 683-701.
[17]  Tsoumakas. Multi-label data sets[DB/OL].[2012-04-10]. http: / /mulan. sourceforge. net /datasets. html, 2010.
[18]  Zhang M L. Image data set[DB/OL].[2012-04-10]. http: / /cse. seu. edu. cn /people /zhangml, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133