全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种基于Bootstrapping的本体学习方法

, PP. 56-58

Keywords: 信息抽取,本体学习,自扩展

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出了一种基于自扩展的本体学习方法用于获取领域术语.该方法只需提供少量种子术语和一个未标注语料库作为输入,由种子术语开始学习抽取模式,再由学习到的模式发现新的术语,进一步由新发现的术语学习新的抽取模式,如此循环迭代.实验结果表明,该算法能够产生较高质量的领域术语集合和抽取模式集合,这样的集合可用于相关领域的信息抽取.

References

[1]  [ Du X Y, LiM, W ang S. A survey on onto logy learn ing research[ J]. Journal o f So ftware, 2006, 17( 9): 1 837-1 847.
[2]  [ Staab S, H othoA. Sem antic web and m ach ine learn ing[ C] / / Tuto rial at the 22nd Inte rnational Con ference onM achine Learning.Bonn Germ any, Am sterdam: IOS Press, 2005.
[3]  [ B lum A, M itche ll T. Comb in ing labe led and unlabe led data w ith co- tra in ing[ C] / / COLT. New Yo rk: ACM Press, 1998: 92-100.
[4]  [ R ilo ff E, Jones R. Learn ing d ic tiona ries fo r info rm ation ex traction by m ult-i leve l bootstrapp ing [ C ] / / Proceedings o f the 16 th Na tiona l Conference on Artific ia l Inte lligence. Austin, TX: AAA I Press/TheM IT Press, 1999: 1 044-1 049.
[5]  [ R ilo ff E. An emp irical study o f autom ated dictionary construc tion for inform ation ex traction in three dom a ins[ C] / / Artific ial Inte lligence. Karlsruhe: E lsev ier Publishers, 1996( 85) : 101-134.
[6]  [ Cunn ingham H, Ga izauskas R, W ilks Y. GATE) ) ) a genera l a rchitec ture for tex t eng ineering[ C] / / Proceed ings o f the 16 th Con ference on Computational L ingu istics. Copenhagen, New Yo rk: ACM Press, 1996.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133