Yang Jilong, Y e Erhua. G eneralization o f a lim it d istribution o f Po lya urn mode l[ J]. Jou rnal o fNanjingUn iversity o fAe ronautics and A stronautics, 1988, 21( 4): 112- 118. ( in Chinese)
[2]
[ A threya K B. On a charac teristic property of Po lya urn[ J] . Stud Sc iM ath H ung, 1969( 4) : 31- 35.
[3]
[ Consu l P C, M ittal S P. A new urn m odel w ith prede term ined strategy[ J]. B iom Z, 1975, 17: 67- 75.
[4]
[ DyczkaW. Po lya d istr ibu tion connected w ith the prob lem o f B ayes [ J]. DemonstM ath, 1972( 4): 145- 165.
[5]
[ Johnson N L, Kotz S. Tw o var iants o f Polya. s urn m ode ls [ J]. Am Stat, 1976, 30( 4) : 186- 188.
[6]
[ Ka rlin S, T ay lo rH M. A First Course in S tochastic Processes [M ]. New York: Academ ic Press, 1975.
[7]
[ Ka rlin S. Cen tral lim it theorem s for certa in infin ite urn schem es [ J]. JM a thM ech, 1967, 17( 4): 373- 401.
[8]
[ Ko lch in V F. Un iform loca l lim it theorem s in the classical ba ll problem fo r a case w ith vary ing lattices[ J]. Theory Prob App,l 1967( 12): 57- 67.
[9]
[ Fe llerW. Probab ility Theory and Its App lications[M ]. 2nd ed. New York: JohnW iley and Sons, 1957.