Wang J, Bai S, Chen NY, et al. Preminary study on the clinical feasibility and effect of online cone beam computer tomography-guided intensity-modulated radiotherapy of nasopharyngeal carcinoma[J]. Radiother Oncol, 2009, 90(2): 221-227.
[2]
Xu F, Wang J, Bai S, et al. Detection of intrafractionl tumor position error in radiotherapy utilizing cone beam computed tomography[J]. Radiother Oncol, 2008, 89(3): 311-319.
[3]
Den RB, Doemer A, Kubicek G, et al. Daily image guidance with cone-beam computed tomography for head-and-neck cancer intensity-modulated radiotherapy: a prospective study[J]. Int J Radiat Oncol Biol Phys, 2010, 76(5): 1353-1359.
[4]
van Kranen S, van Beek S, Rasch C, et al. Setup uncertainties of anatomical sub-regions in head-and-neck cancer patients after offline CBCT guidance[J]. Int J Radiat Oncol Biol Phys, 2009, 73(5): 1566-1573.
[5]
Zhang L, Garden AS, Lo J, et al. Multiple regions-of-interest analysis of setupuncertainties for head-and-neck cancer radiotherapy[J]. Int J Radiat Oncol Biol Phys, 2006, 64(5): 1559-1569.
[6]
Polat B, Wilbert J, Baier K, et al. Nonrigid patient setup errors in the head-and-neck region[J]. Strahlenther Onkol, 2007, 183(9): 506-511.
[7]
van Beek S, van Kranen S, Mencarelli A, et al. First clinical experience with a multiple region of interest registration and correction method in radiotherapy of head-and-neck cancer patients[J]. Radiother Oncol, 2010, 94: 213-217.
[8]
van Kranen S, van Beek S, Mencarelli A, et al. Correction strategies to manage deformations in head-and-neck radiotherapy[J]. Radiother Oncol, 2010, 94(2): 199-205.
[9]
van Herk M, Kooy HM. Automatic three dimensional correlation of CT-CT, CT-MRI, and CT-SPECT using chamfer matching [J]. Med Phys, 1994, 21(7): 1163-1178.
[10]
Meyer J, Wilbert J, Baier K, et al. Positioning accuracy of cone-beam computed tomography in combination with a HexaPOD robot treatment table[J]. Int J Radiat Oncol Biol Phys, 2007, 67(4): 1220-1228.
[11]
Robar JL, Clark BG, Schella JW, et al. Analysis of patient repositioning accuracy in precision radiationtherapy using automated image fusion[J]. Appl Clin Med Phys, 2005, 6(1): 71-83.
[12]
Li H, Zhu XR, Zhang L, et al. Comparison of 2D radiographic images and 3D cone beam computed tomography for positioning head-and-neck radiotherapy patients[J]. Int J Radiat Oncol Biol Phys, 2008, 71(3): 916-925.
[13]
Vásquez Osorio EM, Hoogeman MS, Al-Mamgani A, et al. Local anatomic changes in parotid and submandibular glands during radiotherapy for oropharynx cancer and correlation with dose, studied in detail with nonrigid registration[J]. Int J Radiat Oncol Biol Phys, 2008, 70(3): 875-882.
[14]
Kam MK, Chau RM, Suen J, et al. Intensity-modulated radiotherapy in nasopharyngeal carcinoma: dosimetric advantage over conventional plans and feasibility of dose escalation[J]. Int J Radiat Oncol Biol Phys, 2003, 56 (1): 145-157.
[15]
Lee C, Langen KM, Lu W, et al. Evaluation of geometric changes of parotidglands during head and neck cancer radiotherapy using daily MVCT andautomatic deformable registration[J]. Radiother Oncol, 2008, 89(1): 81-88.
[16]
Lee C, Langen KM, Lu W, et al. Assessment of parotid gland dose changesduring head and neck cancer radiotherapy using daily megavoltage computedtomography and deformable image registration[J]. Int J Radiat Oncol Biol Phys, 2008, 71: 1563-1571.
[17]
Kapanen M, Collan J, Saarilahti K, et al. Accuracy requirements for dose response of the major salivary glands[J]. Radiother Oncol, 2009, 93(1): 109-114.
[18]
Castadot P, Geets X, Lee JA, et al. Assessment by a deformable registration method of the volumetric and positional changes of target volumes and organs at risk in pharyngo-laryngeal tumors treated with concomitant chemo-radiation[J]. Radiother Oncol, 2010, 95(2): 209-217.