全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

27Al魔角旋转核磁共振研究热处理凹凸棒石结构中Al配位变化

Full-Text   Cite this paper   Add to My Lib

Abstract:

热处理是凹凸棒石黏土活化改性的常用方法之一。认识热处理过程中凹凸棒石结构演化,特别是凹凸棒石结构中铝配位的变化规律,对于理解凹凸棒石热活化改性的本质是十分重要的,可以为凹凸棒石黏土热化处理提供理论依据。为此,利用27Al魔角旋转核磁共振(MAS-NMR)技术结合X射线衍射分析,研究了经250~900℃热处理的凹凸棒石结构铝配位的变化。结果表明天然凹凸棒石中铝主要是6配位(铝替代八面体中的镁),有很少量的4配位铝存在(铝替代硅氧四面体中的硅位置),并且在凹凸棒石硅氧四面体的四重周期中存在2个不同的晶格位置;煅烧温度在500℃以下时,铝配位没有发生明显变化;煅烧温度升高到500℃以上时,4配位铝明显增加,并且存在两种不同的晶格位置,表明结构有序性并没有完全破坏,同时还出现了少量的5配位铝。经600℃热处理后,凹凸棒石中铝6配位急剧降低,基本转化为4配位;温度升高到800℃时,6配位以及作为中间态出现的5铝配位完全消失,并且4配位铝峰只有一个峰,表明经过800℃高温处理后4配位铝都处于相同的化学环境。

References

[1]  ? KIRKPATRICK R J, SMITH K A, SCHRAMM S, et al. Solid-state nuclear magnetic resonance spectroscopy of minerals [J]. Annu Rev Earth Planet Sci, 1985, 13: 29–47.
[2]  ? VOORHEES K J, BAUGH S F, STEVENSON D N. The thermal degradation of poly(ethylene glycol)/poly(vinyl alcohol) binder in alumina ceramics [J]. Thermochim Acta, 1996, 274(25): 187–207.
[3]  ? KOMARNENI S. Mechanisms of palygorskite and sepiolite alteration as deduced from solid-state 27Al and 29Si nuclear magnetic Resonance Spectroscopy [J]. Clays Clay Miner, 1989, 37(5): 469–473.
[4]  ? SANZ J, ROBERT J L. Influence of structural factors on 29Si and 27Al NMR chemical shifts of phyllosilicates 2:1 [J]. Phys Chem Miner, 1992, 19(1): 39–45.
[5]  ? SMITH M E. Application of 27Al NMR techniques to structure determination in solids [J]. Appl Magn Reson, 1993, 4(1/2): 1–64.
[6]  ? REHAK P, KUNATH-FANDREI G, LOSSO P, et al. Study of the Al coordination in mullites with varying Al:Si ratio by 27Al NMR spectroscopy and X-ray diffraction [J]. Am Miner, 1998, 83(11/12): 1266– 1276.
[7]  ? ALEMANY L B, CALLENDER R L, BARRON A R. Single-Pulse MAS, Selective Hahn Echo MAS, and 3QMAS NMR Studies of the Mineral Zoisite at 400, 500, 600, and 800 MHz//Exploring the Limits of Al NMR Detectability [J]. J Phys Chem B, 2000, 104(49): 11612–11616.
[8]  ? CHOI M, MASTSUNAGA K, OBA F, et al. 27Al NMR chemical shifts in oxide crystals: A first-principles study [J]. J Phys Chem C, 2009, 113(9): 3869–3873.
[9]  ? ESCUDERO A, DELEVOYE L, LANGENHORST F. Aluminum incorporation in TiO2 rutile at high pressure: An XRD and high-reso- lution 27Al NMR study [J]. J Phys Chem C, 2011, 115(24): 12196– 12201.
[10]  ? KERBER R N, KERMAGORET A, CALLENS E, et al. Nature and structure of aluminum surface sites grafted on silica from a combination of high-field aluminum-27 solid-state NMR spectroscopy and first-principles calculations [J]. J Am Chem Soc, 2012, 134(15): 6767– 6775.
[11]  ? BRADLEY W F. The structural scheme of attapulgite [J]. Am Miner, 1940, 25: 405–410.
[12]  ? 陈天虎, 徐晓春, 岳书仓. 苏皖地区凹凸棒石粘土纳米矿物学及地球化学[M]. 北京: 科学出版社, 2004: 164–181
[13]  CHEN Tianhu, XU Xiaochun, YUE Shucang. Nanometer scale mineralogy and Geochemistry of palygorskite clays in border of Jiangsu and Anhui provinces (in Chinese). Beijing: Science Press, 2004: 164–181.
[14]  ? DRITS V A, SOKOLOVA G V. Structure of palygorskite [J]. Soviet Phys Crystallogr, 1971, 16: 183–185.
[15]  ? WOESSNER D E. Characterization of clay minerals by 27Al nuclear magnetic resonance spectroscopy [J]. Am Mineral, 1989, 74: 203–215.
[16]  ? GüVEN N. The coordination of aluminum ions in the palygorskite structure [J]. Clay Clay Miner, 1992, 40(4): 457–461.
[17]  ? SINGER A. Palygorskite and Sepiolite Group Minerals: in Minerals in Soil Environments [M]. Soil Sci Soc Am, Madison, 1989: 829–872.
[18]  ? SUáREZ M, GARCíA-ROMERO E, SáNCHEZ M R, et al. The effect of the octahedral cations on the dimensions of the palygorskite cell [J]. Clay Miner, 2007, 42(3): 287–297.
[19]  ? SERNA C, VANSCOYOC G E, AHLRICHS J L. Hydroxyl groups and water in palygorskite [J]. Am Miner, 1977, 62: 784–792.
[20]  ? VANSCOYOC G E, SERNA C J, AHLRICHS J L. Structural changes in palygorskite during dehydration and dehydroxylation [J]. Am Miner, 1979, 64: 215–223.
[21]  ? KHORAMI J, LEMIEUX A. Comparison of attapulgites from different sources using TG/DTG and FTIR [J]. Thermochim Acta, 1989, 138: 97–105.
[22]  ? AUGSBURGER M S, STRASSER E, PERINO E, et al. FTIR and M?ssbauer investigation of a substituted palygorskite: Silicate with a channel structure [J]. J Phys Chem Solids, 1998, 59: 175–180.
[23]  ? GIONIS V, KACANDES G H, KASTRITIS I D, et al. On the structure of palygorskite by mid- and near-infrared spectroscopy [J]. Am Miner, 2006, 91(7): 1125–1133.
[24]  ? 陈天虎, 王健, 庆承松, 等. 热处理对凹凸棒石结构、形貌和表面性质的影响[J]. 硅酸盐学报, 2006, 34(11): 1406–1410.
[25]  CHEN Tianhu, WANG Jian, QING Chengsong, et al. J Chin Ceram Soc, 2006, 34(11): 1406–1410.
[26]  ? GALAN E. Properties and applications of palygorskite-sepiolite clays [J]. Clay Miner, 1996, 31: 443–453.
[27]  ? CHEN T H, LIU H B, LI J H, et al. The Effects of thermal treatment on ammonia and sulfur dioxide adsorption-desorption of palygorskite: the change of surface acid-alkali property of palygorskite [J]. Cheml Eng J, 2011, 166(3): 1017–1021.
[28]  ? 孔德军, 陈天虎, 刘海波, 等. 煅烧凹凸棒石的水化处理对其结构和吸附NH3的影响[J]. 硅酸盐学报, 2011, 39(11): 1867–1871.
[29]  KONG Dejun, CHEN Tianhu, LIU Haibo, et al. J Chin Ceram Soc, 2011, 39(11): 1867–1871.
[30]  ? LIU H B, CHEN T H, CHANG D Y, et al. The difference of thermal stability between Fe-substituted palygorskite and Al-rich palygorskite [J]. J Thermal Anal Calorim, 2012, DOI 10.1007/s10973-012-2363-x online.
[31]  ? VáGV?LGYI V, DANIEL L M, PINTO C, et al. Dynamic and controlled rate thermal analysisi of attapulgite [J]. J Thermal Anal Calorim, 2008, 92(2): 589–594.
[32]  ? FROST R L, DING Z. Controlled rate thermal analysis and differential scanning calorimetry of sepiolites and palygorskites [J]. Thermochim Acta, 2003, 397: 119–128.
[33]  ? 何宏平, 胡澄, 郭九皋, 等. 高岭石及其热处理产物的29Si, 27Al魔角旋转核磁共振研究[J]. 科学通报, 1993, 38(6): 570–572.
[34]  HE Hongping, HU Cheng, GUO Jiugao, et al. Chin Sci Bull (in Chinese), 1993, 38(6): 570–572.
[35]  ? STEBBINS J F, SCOTT K, LEE S K, et al. Quantification of five- and six-coordinated aluminum ions in aluminosilicate and fluoride-containing glasses by high-field, high-resolution 27Al NMR [J]. J Non-Cryst Solids, 2000, 275(1/2): 1–6.
[36]  ? GONZALEZ F, PESQUERA C, BLANCO C, et al. Structural and textural evolution under thermal treatment of natural and acid-acti- vated Al-rich and Mg-rich palygorskites [J]. Appl Clay Sci, 1990, 5(1): 23–36.
[37]  ? KUANG W H, FACEY G A, DETELLIER C. Dehydration and rehaydration of palygorskite and the influence of water on the nanopores [J]. Clays Clay Miner, 2004, 52(5): 635–642.
[38]  ? FRINI-SRASRA N, SRASRA E. Effect of heating on palygorskite and acid treated palygorskite properties [J]. Surf Eng Appl Electrochem, 2008, 44(1): 43–49.
[39]  ? 陈天虎, 汪嘉源, 束松林, 等. 改性凹凸棒石黏土吸附低浓度磷的热力学研究[J]. 硅酸盐学报, 2010, 38(9): 1816–1819.
[40]  CHEN Tianhu, WANG Jiayuan, SU Songlin, et al. J Chin Ceram Soc, 2010, 38(9): 1816–1819.
[41]  ? YE H P, CHEN F Z, SHENG Y Q, et al. Adsorption of phosphate from aqueous solution onto modified palygorskites [J]. Sep Purif Technol, 2006, 50: 283–290.
[42]  ? GAN F G, ZHOU J M, WANG H Y, et al. Removal of phosphate from aqueous solution by thermally treated natural palygorskite [J]. Water Res, 2009, 43(11): 2907–2915.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133