全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

中子辐照6H--SiC晶体的光学性质及缺陷分析

DOI: 10.7521/j.issn.0454-5648.2014.03.15

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用透射电子显微镜、紫外--可见--近红外光谱和Raman光谱,对剂量为1.67×1020n/cm2中子辐照的n型半导体6H-SiC晶体进行了微观结构、光学性质及退火过程的研究。结果显示,辐照并没有造成样品的完全非晶化,辐照缺陷主要是点缺陷及其聚集体。辐照后的样品的光吸收明显增加,带隙变小,Urbach能量变大,且在1178、1410和1710nm处出现新的吸收峰。1178和1410nm峰的出现归因于辐照产生的Si空位VSi。对辐照样品进行了室温至1600℃退火,发现800℃是退火过程的转折点。低于800℃退火时,样品中的Frankel对、间隙原子和C空位VC消失;高于800℃退火时,含Si空位VSi缔合缺陷及复杂缺陷团分解湮灭。为了解释与VSi有关的多个光谱峰,建立了SiC中硅空位的“类铍原子模型”。

References

[1]  王玉霞, 何海平, 汤红高. 宽带隙半导体材料SiC研究进展及其应用[J]. 硅酸盐学报, 2002, 30(3): 372-381.
[2]  WANG Yuxia, HE Haiping, TANG Honggao. J Chin Ceram Soc, 2002, 30(3): 372-381.
[3]  NIGAM S, KIM J, REN F, et al. High energy proton irradiation effects on SiC Schottky rectifiers [J]. Appl Phys Lett, 2002, 81(13): 2385-2387.
[4]  BRUZZI M, LAGOMARSINO S, NAVA F, et al. Characterization of epitaxial SiC Schottky barriers as particle detectors [J]. Diam Relat Mater, 2003, 12: 1205-120?.
[5]  周丽宏,张崇红,杨义涛,等. 退火对离子辐照引起4H-SiC损伤恢复的影响[C]//第一届中国核技术及应用研究学术研讨会摘要文集, 北京, 2006: 51.
[6]  ZHOU Lihong, ZHANG Chonghong, YANG Yitao, et al. Annealing behavior of damage induced by ion-irradiated 4H-SiC [C]//The First Session on China Nuclear Technology and Applications Research Symposium, Beijing, 2006: 51.
[7]  WANG P F, RUAN Y F, HUANG L, ZHU W. Nitrogen-promoted formation of graphite-like aggregations in SiC during neutron irradiation [J]. J Appl Phys, 2012, 111: 063517(1-5).
[8]  阮永丰,黄丽,王鹏飞,等. 中子辐照6H-SiC晶体的退火特性及缺陷观测[J]. 硅酸盐学报, 2012, 40(3): 436-442.
[9]  RUAN Yongfeng, HUANG Li, WANG Pengfei, et al. J Chin Ceram. Soc, 2012, 40(3): 436-442.
[10]  马鹏飞, 阮永丰, 洪晓峰, 等. 中子辐照对6H-SiC晶体比热容的影响[J]. 硅酸盐学报, 2009, 37(4): 605-608.
[11]  MA Pengfei, RUAN Yongfeng, HONG Xiaofeng, et al. J Chin Ceram Soc, 2009, 37(4): 605-608.
[12]  陈敬, 阮永丰, 李连刚, 等. 中子辐照掺氮6H-SiC晶体的电学性能及退火的影响[J]. 硅酸盐学报, 2013, 41(6): 812-819.
[13]  CHEN Jing, RUAN Yongfeng, LI Liangang, et al. J Chin Ceram Soc., 2013, 41(6): 812-819.
[14]  SNEAD L L,ZINKLE S J, HAY J C, et al, Amorphization of SiC under ion and neutron irradiation[J]. Nucl Instrum Methods Phys Res B, 1998, 141: 123-132.
[15]  JIN E Z, NIU L S. Crystalline to amorphous transition in silicon carbide under neutron irradiation[J]. Vacuum, 2012, 86: 917-923.
[16]  SNEAD L L, HAY J C. Neutron irradiation induced amorphization of silicon carbide[J]. J Nucl Mater, 1999, 273: 213-220.
[17]  YANO T, MIYAZAKI H, AKIYOSHI M, et al. X-ray diffractometry and high-resolution electron microscopy of neutron-irradiated SiC to a fluence of 1.9×1027 n/m2 [J]. J Nucl Mater, 1998, 253: 78-86.
[18]  沈学础. 半导体的光学性质[M]. 北京:科学出版社, 1992: 60-65.
[19]  SORIEUL S, COSTANTINI J M, GOSMAIN L, et al. Study of damage in ionirradiated α-SiC by optical spectroscopy[J]. J Phys: Condens Matter, 2006, 18: 8493-8502.
[20]  SCHNEIDER J, MAIER K. Point defects in silicon carbide[J]. Physica B: Condens Matter, 1993, 185: 199-206.
[21]  KAWASUSO A, ITOH H, OKADA S. Annealing processes of vacancy-type defects in electron-irradiated and as-grown 6H-SiC studied by positron lifetime spectroscopy [J]. J Appl Phys,1996, 80: 5639-5645.
[22]  王鹏飞, 阮永丰, 侯贝贝, 等. 中子辐照半绝缘SiC单晶的光学性质[J]. 硅酸盐学报, 2013, 41(3): 353358.
[23]  WANG Pengfei, RUAN Yongfeng, HOU Beibei, et al. J Chin Ceram Soc, 2013, 41(3): 353-358.
[24]  GAO F , WEBER W J, Recovery of close Frenkel pairs produced by low energy recoils in SiC [J]. J Appl Phys, 2003, 94(7): 4348-4356.
[25]  WEBER W J, JIANG W, THEVUTHASAN S, Accumulation, dynamic annealing and thermal recovery of ion-beam-induced disorder in silicon carbide[J]. Nucl Instrum Methods Phys Res B, 2001, 175/177: 26-30.
[26]  ZOLNAI Z, SON N T, MAGNUSSON B, et al, Annealing Behaviour of vacancy-and antisite-related defects in electron-irradiated 4H-SiC[J]. Mater Sci Forum, 2004, 457/460: 473-476.
[27]  LING C C, CHEN X D, BRAUER G, et al, Deep-level defects in n-type 6H silicon carbide induced by He implantation[J], J Appl Phys, 2005, 98(4): 043508(1-7).
[28]  ARPIAINEN S, SAARINEN K, HAUTOJ-RVI P. Optical transitions of the silicon vacancy in 6H-SiC studied by positron annihilation spectroscopy[J]. Phys Rev B, 2002, 66:075206(1-10)
[29]  方书淦,张启仁. 晶体色心物理学[M]. 上海:上海交通大学出版社, 1985: 1-3.
[30]  HORNOS T, SON N T,JANéN? E, GALI A. Theoretical study of small silicon clusters in 4H-SiC[J]. Phys Rev B, 2007, 76: 165209(1-6).
[31]  KAWASUSO A, REDMANN F, KRAUSE-REHBERG R. Vacancies and deep levels in electron-irradiated 6H SiC epilayers studied by positron annihilation and deep level transient spectroscopy[J]. J Appl Phys, 2001, 90(7): 3377-3382.
[32]  REMPEL A A, SCHAEFER H E. Irradiation-induced atomic defects in SiC studied by positron annihilation[J]. Appl Phys A, 1995, 61: 51- 53.
[33]  凌志聪,陈旭东,冯汉源,等. 六方碳化硅中的深能级[J]. 研究快讯, 2004, 33(11): 786-790.
[34]  LING Zhicong, CHEN Xudong, FENG Hanyuan, et al. Res News (in Chinese), 2004, 33(11): 786-790.
[35]  S-RMAN E, SON N T, CHEN W M, et al. Silicon vacancy related defect in 4H and 6H SiC[J]. Phys Rev B, 1999,61(4): 2613-2620.
[36]  BENYAGOUB A, AUDREN A. Study of the damage produced in silicon carbide by high energy heavy ions [J]. Nucl Instrum Methods Phys Res B, 2009, 267: 1255-1258.
[37]  OKADA M, ATOBE K, NAKAGMA M, et al. Irradiation temperature dependence of production efficiency of defects induced in neutron-irradiated silicon carbides [J]. Nucl Instrum Methods Phys Res B, 2000, 166/167: 399-403.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133