全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

多晶硅还原炉内三氯氢硅氢还原过程的数值模拟

DOI: 10.7521/j.issn.0454-5648.2014.07.20

Full-Text   Cite this paper   Add to My Lib

Abstract:

建立了多晶硅还原炉内SiHCl3氢还原过程的三维模型,利用CFD软件对炉内的流动、传热和化学反应过程进行了数值模拟,并分析了硅棒高度和硅棒直径对沉积特性的影响。结果表明随着硅棒高度的增加,SiHCl3转化率、硅产率和硅表面沉积速率不断增大,单位能耗不断减小;从反应的角度来说,硅棒高度越高越好;随着硅棒直径不断增加,SiHCl3转化率和硅产率逐渐增大,硅表面沉积速率先减小、后增大,单位能耗先急剧减小、然后趋于平缓;理论上硅棒直径越大越好,且最好超过120mm。

References

[1]   LUQUE A. Handbook of Photovohaic Science and Engineering [M]. New York: John Wiley 8L Sons Inc., 2010: 167-172.
[2]   CANIZO C DEL, COSO G DEL, LUQUE A. Disclosing the polysilicon deposition process [C]//The 25th European Photovoltaic Solar Energy Conference and Exhibition, Valencia, 2010: 1216-1219.
[3]   何恩,谢刚,侯彦青,等.SiHCl3氢还原过程的热力学分析[J].化学工程,2011, 39(11): 39-43.
[4]  HE En, XIE Gang, HOU Yanqing, et al. Chem Eng, 2011, 39(11): 39-43.
[5]   管俭,赖喜德,刘东旗,等.大型多晶硅还原炉的温度场模拟[J].机械设计与制造,2009, (4): 95-97.
[6]  GUAN Jian, LAI Xide, LIU Dongqi, et al. Machinery Design & Manufacture, 2009, (4): 95-97.
[7]   凌猛,赖喜德,刘东旗.多晶硅还原炉炉膛内的辐射传热模型研究[J].机械设计与制造,2009, (4): 125-127.
[8]  LING Meng, LAI Xide, LIU Dongqi. Machinery Design & Manufacture, 2009, (4): 125-127.
[9]   姚心,汪绍芬,严大洲.基于Fluent对多晶硅还原炉的三维数值模拟及其优化[J].有色冶金节能,2011, (4): 48-52, 56.
[10]  YAO Xin, WANG Shaofen, YAN Dazhou. Energy Saving Non-ferrous Metallurgy, 2011, (4): 48-52, 56.
[11]   王子松,黄志军,覃攀,等.西门子CVD还原炉内硅棒生长环境的数值模拟[J].人工晶体学报,2012, 41(2): 507-512.
[12]  WANG Zisong, HUANG Zhijun, QIN Pan, et al. J Synthetic Cryst, 2012, 41(2): 507-512.
[13]   黄哲庆,刘春江,袁希钢.一种新型多晶硅还原炉流动与传热的数值模拟[J].化工学报,2013, 64(2): 484-489.
[14]  HUANG Zheqing, LIU Chunjiang, Yuan Xigang. CIESC J, 2013, 64(2): 484-489.
[15]   孙鹏.多晶硅还原炉流场、温度场数值模拟及能耗分析[D].武汉:华中科技大学,2012.
[16]  SUN Peng. Study on polysilicon reduction furnace’s flow field and temperature field through numerical simulation and energy analysis (in Chinese, dissertation). Wuhan: Huazhong University of Science & Technology, 2012.
[17]   张华芹,茅陆荣,周积卫,等.多晶硅还原炉流场的数值模拟及工艺改进[J].中国太阳能,2009, (7): 37-40.
[18]  ZHANG Huaqin, MAO Lurong, ZHOU Jiwei, et al. Chin Solar Energy, 2009, (7): 37-40.
[19]   柯曾鹏,杨志国,刘欣,等.多晶硅还原炉倒棒原因探讨[J].半导体技术,2010, 35(10): 994-998.
[20]   张攀,王伟文,董海红,等.三氯氢硅和氢气系统中多晶硅化学气相沉积的数值模拟[J].人工晶体学报,2010, 39(2): 494-499.
[21]  ZHANG Pan, Wang Weiwen, Dong Haihong, et al. J Synthetic Cryst, 2010, 39(2): 494-499.
[22]   张攀,王伟文,范军领,等.三维还原炉内多晶硅化学气相沉积的数值模拟[J].太阳能学报,2012, 33(3): 511-516.
[23]  ZHANG Pan, WANG Weiwen, Fan Junling, et al. Acta Energiae Solaris Sinica, 2012, 33(3): 511-516.
[24]   黄国强,毛俊楠,王红星,等.三氯氢硅和氢气系统的气相沉积三维模拟[J].人工晶体学报,2012, 41(3): 680-686.
[25]  HUANG Guoqiang, MAO Junnan, WANG Hongxing, et al. J Synth Cryst, 2012, 41(3): 680-686.
[26]   毛俊楠.多晶硅还原工艺的流程模拟与优化[D].天津:天津大学,2012.
[27]  MAO Junnan. Simulation and optimization of polysilicon reduction process (in Chinese, dissertation). Tianjin: Tianjin University, 2012.
[28]   COSO G DEL, CANIZO C DEL, LUQUE A. Chemical vapor deposition model of polysilicon in a trichlorosilane and hydrogen system[J]. Electrochem Soc, 2008, 155(6): 485-491.
[29]   HABUKA H, NAGOYA T, MAYUSUMI M, et al. Model on transport phenomena and epitaxial growth of silicon thin film in SiHC13-H2 system under atmospheric pressure[J]. Cryst Growth, 1996, 169(1): 61-72.
[30]   HABUKA H, AOYAMA Y, AKIYAMA S, et al. Chemical process of silicon epitaxial growth in a SiHC13-H2 system[J]. Cryst Growth, 1999, 207(1-2): 77-86.
[31]  KE Zengpeng, YANG Zhiguo, LIU Xin, et al. Semic Technol, 2010, 35(10): 994-998.
[32]  

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133