全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

关于海森堡模型中一种并行算法实现的讨论

, PP. 80-85

Keywords: 量子光学,并行算法,本征值,海森堡模型,时间

Full-Text   Cite this paper   Add to My Lib

Abstract:

使用并行算法(简称Z分法)fortran编程计算获取海森堡模型位型[N,k](N为海森堡链总格点数,k为格点中自旋向上的电子数)的最小本征值的最短时间。研究方法使用置换群方法产生模型的能量矩阵,将能量矩阵对角化所得到的本征值构成数据群,采用Z(Z=1,2……)分法Fortran编程计算获得群中最小数据的最短(或最长)时间。研究结论(1)同一位型[N,k],使用2分法获取模型位型[N,k]的最小本征值的时间最长,而不等分或满等分(此时Z=1或位型[N,k]的矩阵维数)时的时间最短且二者相等。(2)对于不同位型[N,k],Z相同而当N(k)同,k(N)增大时,获取模型最小本征值的最短时间增加。通过讨论海森堡模型获取最小本征值的时间计量可为研究者们在计算工作中作提高运算效率的借鉴。

References

[1]  Zha Xinwei . Expansion of orthogonal complete set and transformation operator in teleportation of three-particle entangled state[J]. Chinese Journal of Quantum Electronics(量子电子学报), 2007, 24(2):179-182(in Chinese).
[2]  Bose Sougato. Quantum Communication through an Unmodulated Spin Chain[J].Phys. Rev. Lett, 2003,91:207901.
[3]  Ji Xin,Zhang Shou .Teleportation of the three-particle entangled state By the two EPR pairs[J]. Chinese Journal of Quantum Electronics(量子电子学报), 2006, 23(6):816-819(in Chinese).
[4]  Zhu Aidong , Zhang Shou . Quantum key distribution and controlled quantum direct Communication applying product state of qutrit[J]. Chinese Journal of Quantum Electronics(量子电子学报), 2007, 24(3):316-322(in Chinese).
[5]  Chen Libing,Liu Yuhua,Bai Yihong, et al.Implementing a non-local SWAP operation on two entangled pairs by a three-qubit entangled state and a Bell-state[J]. Chinese Journal of Quantum Electronics (量子电子学报), 2006,23(4):489-493(in Chinese).
[6]  Gu Shijian,Tian Guanshan,Hai Qinglin.Ground-state entanglement in the XXZ model, Phys. Rev. A , 2005,71: 052322.
[7]  Alberto Anfossi,Paolo Giorda.Two-Point Versus Multipartite Entanglement in Quantum Phase Transitions[J].Phys. Rev. Lett,2005,95:056402.
[8]  Gu Shi-Jian.Entanglement and Quantum Phase Transition in the Extended Hubbard Model[J]. Phys. Rev. Lett, 2004, 93:086402. [16] Liang Shaorong , Liu Changnian.Calorifics ([M]. Beijing:Higher Education Press,2006, 147. (in Chinese).
[9]  Ren Jie, Zhu Shiqun. Density-matrix renormalization-group study of entanglement and entropy in an antiferromagnetic Heisenberg spin chain with domain walls.Phys. Rev. A, 2008,77: 034303.
[10]  Cao Min,Zhu Shiqun .Thermal Entanglement between Alternate Qubits of a Four-qubit Heisenberg XX Chain in a Magnetic Field[J].Phys. Rev. A,2005,71:034311.
[11]  Wang Xiaoguang.Thermal and ground-state entanglement in Heisenberg XX qubit rings[J].Phys. Rev. A, 2002,66:034302.
[12]  Hao Xiang, Zhu Shiqun. Entanglement in a spin-s antiferromagnetic Heisenberg chain[J]. Phys. Rev. A , 2005,72: 042306.
[13]  Wang Xiaoguang . Boundary and impurity effects on the entanglement of Heisenberg chains[J]. Phys. Rev.E, 2004,69:066118.
[14]  Amico Luigi .Entanglement in Many-body Systems[J].Rev. Mod. Phys, 2008, 80: 517.
[15]  Wang Xiaoguang . Entanglement in the quantum Heisenberg XY model[J].Phys. Rev. A, 2001, 64: 012313.
[16]  Pan Feng ,Liu Dan,LU Guoying.Recent progress on entanglement of multipartite pure state [J]. Journal of Liaoning Normal University (Natural Science) 辽宁师范大学学报(自然科学版),2003,26(4):364-367(in Chinese).
[17]  Pan Feng. Permutation group approach to the one-dimrnsional XXX heisenberg open spin-1/2 chains[J]. International Journal of Modern Physics,2004,C15:247-265.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133