全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于空间约束高斯混合模型的EPLL自然图像复原

, PP. 391-398

Keywords: 图像处理,图像复原,空间约束高斯混合模型,先验,块似然对数期望

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了提高基于块先验的自然图像复原效果,有效去除图像中的噪声和模糊,提出了一种基于空间约束高斯混合模型的块似然对数期望(ExpectedPatchLogLikelihood,EPLL)复原框架。基于图像块的空间分布信息,将图像块的空间约束高斯混合统计特性作为先验,在图像块复原的基础上实现整幅图像的全局优化复原。对比相关的图像复原方法,提出的方法去噪和去模糊效果更好,并且保图像细节。利用客观性能指标对复原结果进行评价。实验结果表明,提出的方法有效易行,而且复原图像表现出良好的可视效果。

References

[1]  J. Portilla, V. Strela, M. Wainwright, and E. Simoncelli, “Image denoising using scale mixtures of gaussians in the wavelet domain,” IEEE Transactions on Image Processing, vol. 12, no. 11, pp. 1338–1351, 2003.
[2]  A. Buades, B. Coll, and J. Morel, “A non-local algorithm for image denoising,” in Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, vol. 2, pp. 60–65, IEEE, 2005.
[3]  M. Elad and M. Aharon, “Image denoising via sparse and redundant representations over learned dictionaries,” Image Processing, IEEE Transactions on, vol. 15, no. 12, pp. 3736–3745, 2006.
[4]  Y. Hel-Or and D. Shaked, “A discriminative approach for wavelet denoising,” IEEE Transactions on Image Processing, vol. 17, no. 4, p. 443, 2008.
[5]  K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image restoration by sparse 3D transform-domain collaborative filtering,” in SPIE Electronic Imaging, 2008.
[6]  S. Roth and M. Black, “Fields of experts,” International Journal of Computer Vision, vol. 82, no. 2, pp. 205–229, 2009.
[7]  D. Krishnan and R. Fergus, “Fast image deconvolution using hyper-laplacian priors,” in Advances in Neural Information Processing Systems 22, pp. 1033–1041, 2009.
[8]  J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Non-local sparse models for image restoration,” in Computer Vision, 2009 IEEE 12th International Conference on, pp. 2272–2279, IEEE, 2010.
[9]  ? Daniel Zoran, Yair Weiss: From learning models of natural image patches to whole image restoration. ICCV 2011: 479-486
[10]  ?Thanh Minh Nguyen, Q. M. Jonathan Wu: Fast and Robust Spatially Constrained Gaussian Mixture Model for Image Segmentation. IEEE Trans. Circuits Syst. Video Techn. 23(4): 621-635 (2013)
[11]  D. Geman and C. Yang, “Nonlinear image recovery with half-quadratic regularization,” Image Processing, IEEE Transactions on, vol. 4, no. 7, pp. 932–946, 2002.
[12]  D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics,” in Proc. 8th Int’l Conf. Computer Vision, vol. 2, pp. 416–423, July 2001.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133