全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

用分数维空间方法研究量子阱中激子效应对三次谐波产生的影响

, PP. 473-482

Keywords: 非线性光学,三次谐波,分数维空间,激子效应,量子阱

Full-Text   Cite this paper   Add to My Lib

Abstract:

运用分数维空间方法理论研究了GaAs/AlGaAs无限深和有限深方形量子阱中激子效应对三次谐波产生的影响。利用分数维空间模型获得波函数和束缚能级为空间维度的函数,而空间维度数是阱宽的函数。无限深方阱的维度数随着阱宽的减小从三维极限过渡到二维;而在有限深阱中,当维度数达到一个极值后,维度数随阱宽的减小而增大。采用密度矩阵和迭代法导出三次谐波的表达式。数值结果表明,考虑激子效应的三次谐波系数比只考虑电子状态的系数增大40%左右,并且三次谐波系数大小依赖于激子的受限程度。结果还表明在弛豫率较小情况下可以获得较大的三次谐波的系数。

References

[1]  Wang Guang-Hui, GUO Kang-Xian. Excitonic effects on the third-harmonic generation in parabolic quantum dots [J]. J. Phys: Condens. Matter, 2001, 13: 8197-8206.
[2]  Chen R, Lin D L, Mendoza B. Enhancement of the 3rd-order nonlinear-optical susceptibility in si quantum wires [J]. Phys. Rev. B, 1993, 48 (16)11879-11882.
[3]  Zhang Chao-Jin, Guo Kang-Xian and LU Zhi-En, Exciton effects on the optical absorptions in one-dimensional quantum dots [J]. Physica E, 2007, 36: 92-97.
[4]  Mathieu H, Lefebvre P, and CHRISTOL P. Simple analytical method for calculating exciton binding energies in semiconductor quantum wells [J]. 1992, Phys. Rev. B, 46: 4092-4101.
[5]  Christol P, Lefebvre P, and Mathieu H. Fractional‐dimensional calculation of exciton binding energies in semiconductor quantum wells and quantum‐well wires [J]. J. Appl. Phys. 1993, 74: 5626-5638.
[6]  Yin Miao, Cheng Ze, Wu Zi-Xia, et al. Study of Squeezed Excitons in Polar Semiconductors [J]. Cnmmun. Theor. Phys, 2009, 51 (3): 545-549.
[7]  Matos-Abiague A, OliveirA L E, and Dios-Leyva de M, Fractional-dimensional approach for excitons in GaAs-Ga1-x Alx As quantum wells [J]. Phys. Rev. B, 1998, 58: 4072-4076.
[8]  Ekimov A I, Efros Al L, Onushchenko A A, Quantum size effect in semiconductor microcrystals [J]. Solid State Commun, 1985, 56:921-924.
[9]  Brus L E. Zero-dimensional "excitons" in semiconductor clusters [J]. IEEE J. Quantum Electron, 1986, 22: 1909-1914.
[10]  He X F. Anisotropy and isotropy: A model of fraction-dimensional space [J]. Solid State Commun, 1990, 75: 111-114.
[11]  He X F. Excitons in anisotropic solids: The model of fractional-dimensional space [J]. Phys. Rev. B, 1991, 43: 2063-2069.
[12]  Zhao Q X, Monemar B, Holtz P O, et al. Binding energies and diamagnetic shifts for free excitons in symmetric coupled double quantum wells [J]. Phys. Rev. B, 1994, 50: 4476-4481.
[13]  Reyes-Go′mez e, Matos-Abiague A, Perdomo-leiva C A, et al. Excitons and shallow impurities in GaAs-Ga1-xAlxAs semiconductor heterostructures within a fractional-dimensional space approach:?Magnetic-field effects [J]. Phys. Rev. B, 2000, 61: 13104-13114 .
[14]  Singh J, Birkedal D, Lyssenko V G, et al. Binding energy of two-dimensional biexcitons [J]. Phys. Rev. B, 1996, 53: 15909-15913.
[15]  Thilagam A. Two-dimensional charged-exciton complexes [J]. Phys. Rev. B , 1997, 55: 7804-7808.
[16]  Matos-abiague A, Oliveira l E, Dios-leyva de M. A fractional-dimensional space approach to the study of shallow-donor states in symmetric-coupled GaAs–Ga1?xAlxAs multiple quantum wells [J]. Physica B, 2001, 296: 342-350.
[17]  Reyes-Go′mez e, Oliveira l E, Dios-Leyva de M. Shallow impurities in semiconductor superlattices: A fractional-dimensional space approach [J]. J. Appl. Phys, 1999, 85: 4045-4049.
[18]  Tanguy C, Lefebvre P, Mathieu H, et al. Analytical model for the refractive index in quantum wells derived from the complex dielectric constant of Wannier excitons in noninteger dimensions [J]. J. Appl. Phys, 1997, 82: 798-802.
[19]  Matos-Abiague A. Polaron effect in GaAs-Ga1-xAlxAs quantum wells: A fractional-dimensional space approach [J]. Phys. Rev. B, 2002, 65: 165321-165329.
[20]  Lu Zhi-En, Guo Kang-Xian. Polaronic Electron-Phonon Interactions on the Third-Harmonic Generation in a Square Quantum Well [J]. Cnmmun. Theor. Phys, 2006, 45: 171-174.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133