全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cu掺杂对ZnO氧化物电子结构与电输运性能的影响

, PP. 372-378

Keywords: 材料,ZnO氧化物,Cu掺杂,电子结构,电输运性能

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用平面波超软赝势密度泛函理论计算的方法研究了p型Cu掺杂的纤锌矿结构氧化物ZnO的电子结构,在此基础上分析了其电输运性能。计算结果表明,Cu掺杂ZnO氧化物具有0.6eV的直接带隙,且为p型半导体,在导带和价带中都出现了由Cu电子能级形成的能带,体系费米能级附近的能带主要由Cup态、Cud态和Op态电子构成,且他们之间存在着强相互作用。电输运性能分析结果表明,Cu掺杂的ZnO氧化物价带中的载流子有效质量较大,导带中的载流子有效质量较小;其载流子输运主要由Cup态、Cud态、Op态电子完成,且需要载流子(空穴和电子)跃迁的能隙宽度较未掺杂的ZnO氧化物减小。

References

[1]  Pei J, Chen G, Zhou N, et al. High temperature transport and thermoelectric properties of Ca3?xErxCo4O9+δ
[2]  [J]. Physica B, 2011, 406: 571.
[3]  Phaga P, Vora-Ud A, Seetawan T. Invension of Low cost Thermoelectric Generators
[4]  [J]. Procedia Eng., 2012, 32: 1050.
[5]  Wang Y, Sui Y, Wang X. et al. Structure, transport and magnetic properties of electron-doped perovskites RxCa1-xMnO3 (R = La, Y and Ce)
[6]  [J]. J. Phys.: Condens. Matter., 2009, 21:196004.
[7]  Lan J, Lin Y H, Liu Y, et al. High thermoelectric performance of nano-structured In2O3-based ceramics
[8]  [J]. J Am. Ceram. Soc., 2012, 95: 2465.
[9]  Terasaki I, High-temperature oxide thermoelectrics
[10]  [J]. J. Appl. Phys., 2011, 110: 053705.
[11]  Zhang F P, Lu Q M, Zhang X, et al. Electrical transport properties of CaMnO3 thermoelectric compound: a theoretical study
[12]  [J]. J. Phys. Chem. Solids, 2013, 74: 1859.
[13]  Kroger P, Ruth M, Weber N, et.al. Carrier localization in ZnO quantum wires
[14]  [J]. App. Phys.Lett., 2012, 100: 263114.
[15]  Vogel-Schauble N, Romanyuk Y E, Yoon S, et al. Thermoelectric properties of nanostructured Al-substituted ZnO thin films
[16]  [J]. Thin Solid Films, 2012, 520: 6869.
[17]  Zhang F P, Lu Q M, Zhang X, et al. Preparation and improved electrical performance of the Pr-doped CaMnO3+δ thermoelectric compound
[18]  [J]. Phys. Scr., 2013, 88: 035705.
[19]  Peng J Y, Liu X Y, Fu L W, et al. Synthesis and thermoelectric properties of In0.2+xCo4Sb12+x composite
[20]  [J]. J. Alloys Compds., 2012, 521: 141.
[21]  Qu X, Wang W, Lv S, Jia D. Thermoelectric properties and electronic structure of Al-doped ZnO
[22]  [J]. Solid State Commun., 2011, 151: 332.
[23]  Funahashi S, Nakamura T, Kageyama K, et al. Monolithic oxide-metal composite thermoelectric generators for energy harvesting
[24]  [J]. J. Appl. Phys., 2011, 109: 124509.
[25]  Zhang R Z, Hu X Y, Guo P, et al. Thermoelectric transport coefficients of n-doped CaTiO3, SrTiO3 and BaTiO3: A theoretical study
[26]  [J]. Physica B, 2012, 407: 1114.
[27]  Ozgur U, Alivov Y I, Liu C, et al. A comprehensive review of ZnO materials and devices
[28]  [J]. J. Appl. Phys., 2005, 98: 041301.
[29]  Fergus J F. Oxide materials for high temperature thermoelectric energy conversion
[30]  [J]. J. Euro. Ceram. Soc., 2012, 32: 525.
[31]  Zhang C, Zhang C L, Li J C, et al. Substitutional position and insulator-to-metal transition in Nb-doped SrTiO3
[32]  [J], Mater. Chem. Phys., 2008, 107: 215.
[33]  Nong N V, Liu C J, Ohtaki M. High-temperature thermoelectric properties of late rare earth-doped Ca3Co4O9+δ
[34]  [J]. J. Alloys Compd., 2011, 509: 977.
[35]  Wang V, Ma D, Jia W, et al. Structural and electronic properties of hexagonal ZnO: a hybrid functional study
[36]  [J]. Solid State Commun., 2012, 152: 2045.
[37]  OHTAKI M, TSUBOTA T, EGUCHI K. High temperature thermoelectric properties of (Zn1-xAlx)O
[38]  [J].J. Appl. Phys., 1996, 79; 1816.
[39]  Park K, Ko KY. Effect of TiO2 on high-temperature thermoelectric properties of ZnO
[40]  [J].J. Alloys Compd., 2007, 430: 200.
[41]  Payne M C, Teter M P, Allan D C, et al. ITERATIVE MINIMIZATION TECHNIQUES FOR ABINITIO TOTAL-ENERGY CALCULATIONS - MOLECULAR-DYNAMICS AND CONJUGATE GRADIENTS
[42]  [J].Rev. Modern Phys., 1992, 64: 1045.
[43]  Rossler U. ENERGY BANDS FOR CSI (GREENS-FUNCTION METHOD)
[44]  [J]. Bull. Am. Phys. Soc., 1969, 14:331.
[45]  Li J C, Wang C L, Wang M X, et al. Vibrational and thermal properties of small diameter silicon nanowires
[46]  [J]. J. Appl. Phys. 2009, 105: 043503.
[47]  Zhang H, Wu Y X, Gu S L, et al. Electronic structure and optical properties of Sb doped on ZnO
[48]  [J]. Chinese Journal of Quantum Electronics(量子电子学报), 2012, 29: 230(in Chinese).
[49]  Zuo L Y, Shen H L, Zhu Y G. Research on thermoelectric properties of Fe doped ZnO
[50]  [J]. Journal of Functional Materials(功能材料), 2009, A40: 223(in Chinese).
[51]  Zhang F P, Zhang X, Lu Q M, et al. Doping induced electronic structure and estimated thermoelectric properties of CaMnO3 compound oxide
[52]  [J]. Physica B, 2011, 406: 1258.
[53]  Tsubota T, Ohno T, Shiraishi N, et al. Thermoelectric properties of Sn1?x?yTiySbxO2 ceramics
[54]  [J]. J. Alloys Compd., 2008, 463: 288.
[55]  Miclau M, Hébert S, Retoux R, et al. Influence of A-site cation size on structural and physical properties in Ca1-xSrxMn0.96Mo0.04O3: A comparison of the and 0.6 compounds
[56]  [J]. J. Solid State Chem., 2005, 178: 1104.
[57]  Zhang L, Singh D J. Electronic structure and thermoelectric properties of layered PbSe-WSe2 materials
[58]  [J]. Phys. Rev. B, 2009, 80: 075117.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133